File size: 9,584 Bytes
420032c 04015f2 420032c 04015f2 420032c 2fb2c9f 04015f2 2fb2c9f 04015f2 2fb2c9f 04015f2 2fb2c9f 04015f2 2fb2c9f 04015f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
---
configs:
- config_name: all
data_files:
- path:
- all.jsonl.zst
split: train
default: true
- config_name: ar
data_files:
- path:
- ar.jsonl.zst
split: train
- config_name: az
data_files:
- path:
- az.jsonl.zst
split: train
- config_name: bg
data_files:
- path:
- bg.jsonl.zst
split: train
- config_name: bn
data_files:
- path:
- bn.jsonl.zst
split: train
- config_name: ca
data_files:
- path:
- ca.jsonl.zst
split: train
- config_name: cs
data_files:
- path:
- cs.jsonl.zst
split: train
- config_name: da
data_files:
- path:
- da.jsonl.zst
split: train
- config_name: de
data_files:
- path:
- de.jsonl.zst
split: train
- config_name: el
data_files:
- path:
- el.jsonl.zst
split: train
- config_name: en
data_files:
- path:
- en.jsonl.zst
split: train
- config_name: es
data_files:
- path:
- es.jsonl.zst
split: train
- config_name: et
data_files:
- path:
- et.jsonl.zst
split: train
- config_name: fa
data_files:
- path:
- fa.jsonl.zst
split: train
- config_name: fi
data_files:
- path:
- fi.jsonl.zst
split: train
- config_name: fr
data_files:
- path:
- fr.jsonl.zst
split: train
- config_name: he
data_files:
- path:
- he.jsonl.zst
split: train
- config_name: hi
data_files:
- path:
- hi.jsonl.zst
split: train
- config_name: hu
data_files:
- path:
- hu.jsonl.zst
split: train
- config_name: hy
data_files:
- path:
- hy.jsonl.zst
split: train
- config_name: id
data_files:
- path:
- id.jsonl.zst
split: train
- config_name: is
data_files:
- path:
- is.jsonl.zst
split: train
- config_name: it
data_files:
- path:
- it.jsonl.zst
split: train
- config_name: ja
data_files:
- path:
- ja.jsonl.zst
split: train
- config_name: ka
data_files:
- path:
- ka.jsonl.zst
split: train
- config_name: kk
data_files:
- path:
- kk.jsonl.zst
split: train
- config_name: ko
data_files:
- path:
- ko.jsonl.zst
split: train
- config_name: lt
data_files:
- path:
- lt.jsonl.zst
split: train
- config_name: lv
data_files:
- path:
- lv.jsonl.zst
split: train
- config_name: mk
data_files:
- path:
- mk.jsonl.zst
split: train
- config_name: ml
data_files:
- path:
- ml.jsonl.zst
split: train
- config_name: mr
data_files:
- path:
- mr.jsonl.zst
split: train
- config_name: ms
data_files:
- path:
- ms.jsonl.zst
split: train
- config_name: ne
data_files:
- path:
- ne.jsonl.zst
split: train
- config_name: nl
data_files:
- path:
- nl.jsonl.zst
split: train
- config_name: 'no'
data_files:
- path:
- no.jsonl.zst
split: train
- config_name: pl
data_files:
- path:
- pl.jsonl.zst
split: train
- config_name: pt
data_files:
- path:
- pt.jsonl.zst
split: train
- config_name: ro
data_files:
- path:
- ro.jsonl.zst
split: train
- config_name: ru
data_files:
- path:
- ru.jsonl.zst
split: train
- config_name: sk
data_files:
- path:
- sk.jsonl.zst
split: train
- config_name: sl
data_files:
- path:
- sl.jsonl.zst
split: train
- config_name: sq
data_files:
- path:
- sq.jsonl.zst
split: train
- config_name: sr
data_files:
- path:
- sr.jsonl.zst
split: train
- config_name: sv
data_files:
- path:
- sv.jsonl.zst
split: train
- config_name: ta
data_files:
- path:
- ta.jsonl.zst
split: train
- config_name: th
data_files:
- path:
- th.jsonl.zst
split: train
- config_name: tr
data_files:
- path:
- tr.jsonl.zst
split: train
- config_name: uk
data_files:
- path:
- uk.jsonl.zst
split: train
- config_name: ur
data_files:
- path:
- ur.jsonl.zst
split: train
- config_name: vi
data_files:
- path:
- vi.jsonl.zst
split: train
- config_name: zh
data_files:
- path:
- zh.jsonl.zst
split: train
language:
- multilingual
- ar
- az
- bg
- bn
- ca
- cs
- da
- de
- el
- en
- es
- et
- fa
- fi
- fr
- he
- hi
- hu
- hy
- id
- is
- it
- ja
- ka
- kk
- ko
- lt
- lv
- mk
- ml
- mr
- ms
- ne
- nl
- 'no'
- pl
- pt
- ro
- ru
- sk
- sl
- sq
- sr
- sv
- ta
- th
- tr
- uk
- ur
- vi
- zh
task_categories:
- text-generation
- text-classification
- text-retrieval
size_categories:
- 1M<n<10M
license: cc-by-4.0
---
# High Quality Multilingual Sentences
- This dataset contains multilingual sentences derived from the [agentlans/LinguaNova](https://huggingface.co/datasets/agentlans/LinguaNova) dataset.
- It includes 1.58 million rows across 51 different languages, each in its own configuration.
Example row (from the `all` config):
```json
{
"text": "امام جمعه اصفهان گفت: میزان نیاز آب شرب اصفهان ۱۱.۵ متر مکعب است که تمام استان اصفهان را پوشش میدهد و نسبت به قبل از انقلاب یکی از پیشرفتها در حوزه آب بوده است.",
"fasttext": "fa",
"gcld3": "fa"
}
```
Fields:
- **text**: The sentence in the original language.
- **fasttext**, **gcld3**: Language codes determined using fastText and gcld3 Python packages.
## Configurations
Each individual language is available as a separate configuration, such as `ar`, `en`. These configurations contain only sentences identified to be of that specific language by both the fastText and gcld3 models.
Example row (from a language-specific config):
```json
{
"text": "Ne vienas asmuo yra apsaugotas nuo parazitų atsiradimo organizme."
}
```
## Methods
### Data Loading and Processing
The `all` split was downloaded from the [agentlans/LinguaNova](https://huggingface.co/datasets/agentlans/LinguaNova) dataset.
1. **Text Cleaning**: Raw text was cleaned by removing HTML tags, emails, emojis, hashtags, user handles, and URLs. Unicode characters and whitespace were normalized, and hyphenated words were handled to ensure consistency.
2. **Sentence Segmentation**: Text was segmented into individual sentences using ICU's `BreakIterator` class, which efficiently processed different languages and punctuation.
3. **Deduplication**: Duplicate entries were removed to maintain uniqueness and prevent redundancy in the dataset.
### Language Detection
Two methods were used for language identification:
1. **gcld3**: Google's Compact Language Detector 3 was used for fast and accurate language identification.
2. **fastText**: Facebook’s fastText model was employed, which improved accuracy by considering subword information.
### Quality Assessment
Text quality was assessed through batch inference using the [agentlans/multilingual-e5-small-aligned-quality](https://huggingface.co/agentlans/multilingual-e5-small-aligned-quality) model.
1. **Data Retrieval**: Entries with a quality score of 1 or higher and a minimum input length of 20 characters were retained.
2. **Text Refinement**: Leading punctuation and spaces were removed, and balanced quotation marks were validated using regular expressions.
### Dataset Configs
The filtered sentences and their annotated languages were written to the `all.jsonl` file. The file was then split into language-specific JSONL files, containing only those sentences that matched consistently with both gcld3 and fasttext in terms of language identification. Only languages with at least 100 sentences after filtering were included in these configs.
## Usage
### Loading the Dataset
```python
from datasets import load_dataset
dataset = load_dataset('agentlans/high-quality-multilingual-sentences', 'all')
```
For language-specific configurations:
```python
language_config = load_dataset('agentlans/high-quality-multilingual-sentences', 'en') # Replace with desired language code.
```
### Example Usage in Python
```python
from datasets import load_dataset
# Load the dataset for all languages or a specific one
dataset_all = load_dataset("agentlans/high-quality-multilingual-sentences", "all")
print(dataset_all["train"][0])
language_config = load_dataset("agentlans/high-quality-multilingual-sentences", "en") # Replace 'en' with desired language code.
print(language_config["train"][:5])
```
## Limitations
- **Multilingual content bias**: The quality classifier is biased towards educational and more formal content.
- **Language coverage**: Limited to the 50 written languages from LinguaNova. There's a lack of African and indigenous languages.
- **Short input issues**: Language identification accuracy can suffer when working with short inputs like single sentences.
- **Sentence segmentation challenges**: Some languages' delimiters might not be handled correctly.
- **Redundancy**: The filtering was only done on exact matches so some sentences may be similar (but not identical).
Additionally:
- **Thai data imbalance**: Fewer examples are available for `th` (Thai) than expected. Could be a sentence segmentation problem.
- **Malay and Indonesian**: There are few examples for the `ms` (Malay) subset. Consider also using the `id` (Indonesian) subset when training models.
- **Chinese written forms**: This dataset does not distinguish between different Chinese character variations.
## Licence
This dataset is released under a [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/) licence, allowing for free use and distribution as long as proper attribution is given to the original source. |