File size: 9,584 Bytes
420032c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04015f2
420032c
04015f2
420032c
2fb2c9f
 
04015f2
2fb2c9f
04015f2
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb2c9f
04015f2
2fb2c9f
04015f2
 
 
 
 
 
 
 
 
 
 
 
2fb2c9f
04015f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
---
configs:
- config_name: all
  data_files:
  - path:
    - all.jsonl.zst
    split: train
  default: true
- config_name: ar
  data_files:
  - path:
    - ar.jsonl.zst
    split: train
- config_name: az
  data_files:
  - path:
    - az.jsonl.zst
    split: train
- config_name: bg
  data_files:
  - path:
    - bg.jsonl.zst
    split: train
- config_name: bn
  data_files:
  - path:
    - bn.jsonl.zst
    split: train
- config_name: ca
  data_files:
  - path:
    - ca.jsonl.zst
    split: train
- config_name: cs
  data_files:
  - path:
    - cs.jsonl.zst
    split: train
- config_name: da
  data_files:
  - path:
    - da.jsonl.zst
    split: train
- config_name: de
  data_files:
  - path:
    - de.jsonl.zst
    split: train
- config_name: el
  data_files:
  - path:
    - el.jsonl.zst
    split: train
- config_name: en
  data_files:
  - path:
    - en.jsonl.zst
    split: train
- config_name: es
  data_files:
  - path:
    - es.jsonl.zst
    split: train
- config_name: et
  data_files:
  - path:
    - et.jsonl.zst
    split: train
- config_name: fa
  data_files:
  - path:
    - fa.jsonl.zst
    split: train
- config_name: fi
  data_files:
  - path:
    - fi.jsonl.zst
    split: train
- config_name: fr
  data_files:
  - path:
    - fr.jsonl.zst
    split: train
- config_name: he
  data_files:
  - path:
    - he.jsonl.zst
    split: train
- config_name: hi
  data_files:
  - path:
    - hi.jsonl.zst
    split: train
- config_name: hu
  data_files:
  - path:
    - hu.jsonl.zst
    split: train
- config_name: hy
  data_files:
  - path:
    - hy.jsonl.zst
    split: train
- config_name: id
  data_files:
  - path:
    - id.jsonl.zst
    split: train
- config_name: is
  data_files:
  - path:
    - is.jsonl.zst
    split: train
- config_name: it
  data_files:
  - path:
    - it.jsonl.zst
    split: train
- config_name: ja
  data_files:
  - path:
    - ja.jsonl.zst
    split: train
- config_name: ka
  data_files:
  - path:
    - ka.jsonl.zst
    split: train
- config_name: kk
  data_files:
  - path:
    - kk.jsonl.zst
    split: train
- config_name: ko
  data_files:
  - path:
    - ko.jsonl.zst
    split: train
- config_name: lt
  data_files:
  - path:
    - lt.jsonl.zst
    split: train
- config_name: lv
  data_files:
  - path:
    - lv.jsonl.zst
    split: train
- config_name: mk
  data_files:
  - path:
    - mk.jsonl.zst
    split: train
- config_name: ml
  data_files:
  - path:
    - ml.jsonl.zst
    split: train
- config_name: mr
  data_files:
  - path:
    - mr.jsonl.zst
    split: train
- config_name: ms
  data_files:
  - path:
    - ms.jsonl.zst
    split: train
- config_name: ne
  data_files:
  - path:
    - ne.jsonl.zst
    split: train
- config_name: nl
  data_files:
  - path:
    - nl.jsonl.zst
    split: train
- config_name: 'no'
  data_files:
  - path:
    - no.jsonl.zst
    split: train
- config_name: pl
  data_files:
  - path:
    - pl.jsonl.zst
    split: train
- config_name: pt
  data_files:
  - path:
    - pt.jsonl.zst
    split: train
- config_name: ro
  data_files:
  - path:
    - ro.jsonl.zst
    split: train
- config_name: ru
  data_files:
  - path:
    - ru.jsonl.zst
    split: train
- config_name: sk
  data_files:
  - path:
    - sk.jsonl.zst
    split: train
- config_name: sl
  data_files:
  - path:
    - sl.jsonl.zst
    split: train
- config_name: sq
  data_files:
  - path:
    - sq.jsonl.zst
    split: train
- config_name: sr
  data_files:
  - path:
    - sr.jsonl.zst
    split: train
- config_name: sv
  data_files:
  - path:
    - sv.jsonl.zst
    split: train
- config_name: ta
  data_files:
  - path:
    - ta.jsonl.zst
    split: train
- config_name: th
  data_files:
  - path:
    - th.jsonl.zst
    split: train
- config_name: tr
  data_files:
  - path:
    - tr.jsonl.zst
    split: train
- config_name: uk
  data_files:
  - path:
    - uk.jsonl.zst
    split: train
- config_name: ur
  data_files:
  - path:
    - ur.jsonl.zst
    split: train
- config_name: vi
  data_files:
  - path:
    - vi.jsonl.zst
    split: train
- config_name: zh
  data_files:
  - path:
    - zh.jsonl.zst
    split: train
language:
- multilingual
- ar
- az
- bg
- bn
- ca
- cs
- da
- de
- el
- en
- es
- et
- fa
- fi
- fr
- he
- hi
- hu
- hy
- id
- is
- it
- ja
- ka
- kk
- ko
- lt
- lv
- mk
- ml
- mr
- ms
- ne
- nl
- 'no'
- pl
- pt
- ro
- ru
- sk
- sl
- sq
- sr
- sv
- ta
- th
- tr
- uk
- ur
- vi
- zh
task_categories:
- text-generation
- text-classification
- text-retrieval
size_categories:
- 1M<n<10M
license: cc-by-4.0
---
# High Quality Multilingual Sentences

- This dataset contains multilingual sentences derived from the [agentlans/LinguaNova](https://huggingface.co/datasets/agentlans/LinguaNova) dataset.
- It includes 1.58 million rows across 51 different languages, each in its own configuration.

Example row (from the `all` config):
```json
{
    "text": "امام جمعه اصفهان گفت: میزان نیاز آب شرب اصفهان ۱۱.۵ متر مکعب است که تمام استان اصفهان را پوشش میدهد و نسبت به قبل از انقلاب یکی از پیشرفتها در حوزه آب بوده است.",
    "fasttext": "fa",
    "gcld3": "fa"
}
```

Fields:
- **text**: The sentence in the original language.
- **fasttext**, **gcld3**: Language codes determined using fastText and gcld3 Python packages.

## Configurations

Each individual language is available as a separate configuration, such as `ar`, `en`. These configurations contain only sentences identified to be of that specific language by both the fastText and gcld3 models.

Example row (from a language-specific config):
```json
{
    "text": "Ne vienas asmuo yra apsaugotas nuo parazitų atsiradimo organizme."
}
```

## Methods

### Data Loading and Processing

The `all` split was downloaded from the [agentlans/LinguaNova](https://huggingface.co/datasets/agentlans/LinguaNova) dataset.
1. **Text Cleaning**: Raw text was cleaned by removing HTML tags, emails, emojis, hashtags, user handles, and URLs. Unicode characters and whitespace were normalized, and hyphenated words were handled to ensure consistency.
2. **Sentence Segmentation**: Text was segmented into individual sentences using ICU's `BreakIterator` class, which efficiently processed different languages and punctuation.
3. **Deduplication**: Duplicate entries were removed to maintain uniqueness and prevent redundancy in the dataset.

### Language Detection

Two methods were used for language identification:
1. **gcld3**: Google's Compact Language Detector 3 was used for fast and accurate language identification.
2. **fastText**: Facebook’s fastText model was employed, which improved accuracy by considering subword information.

### Quality Assessment

Text quality was assessed through batch inference using the [agentlans/multilingual-e5-small-aligned-quality](https://huggingface.co/agentlans/multilingual-e5-small-aligned-quality) model.
1. **Data Retrieval**: Entries with a quality score of 1 or higher and a minimum input length of 20 characters were retained.
2. **Text Refinement**: Leading punctuation and spaces were removed, and balanced quotation marks were validated using regular expressions.

### Dataset Configs

The filtered sentences and their annotated languages were written to the `all.jsonl` file. The file was then split into language-specific JSONL files, containing only those sentences that matched consistently with both gcld3 and fasttext in terms of language identification. Only languages with at least 100 sentences after filtering were included in these configs.

## Usage

### Loading the Dataset
```python
from datasets import load_dataset

dataset = load_dataset('agentlans/high-quality-multilingual-sentences', 'all')
```

For language-specific configurations:
```python
language_config = load_dataset('agentlans/high-quality-multilingual-sentences', 'en')  # Replace with desired language code.
```

### Example Usage in Python
```python
from datasets import load_dataset

# Load the dataset for all languages or a specific one
dataset_all = load_dataset("agentlans/high-quality-multilingual-sentences", "all")
print(dataset_all["train"][0])

language_config = load_dataset("agentlans/high-quality-multilingual-sentences", "en")  # Replace 'en' with desired language code.
print(language_config["train"][:5])
```

## Limitations

- **Multilingual content bias**: The quality classifier is biased towards educational and more formal content.
- **Language coverage**: Limited to the 50 written languages from LinguaNova. There's a lack of African and indigenous languages.
- **Short input issues**: Language identification accuracy can suffer when working with short inputs like single sentences.
- **Sentence segmentation challenges**: Some languages' delimiters might not be handled correctly.
- **Redundancy**: The filtering was only done on exact matches so some sentences may be similar (but not identical).

Additionally:
- **Thai data imbalance**: Fewer examples are available for `th` (Thai) than expected. Could be a sentence segmentation problem.
- **Malay and Indonesian**: There are few examples for the `ms` (Malay) subset. Consider also using the `id` (Indonesian) subset when training models.
- **Chinese written forms**: This dataset does not distinguish between different Chinese character variations.

## Licence

This dataset is released under a [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/) licence, allowing for free use and distribution as long as proper attribution is given to the original source.