--- license: mit task_categories: - image-to-image language: - en pretty_name: a size_categories: - 10M Wensong Song · Hong Jiang · Zongxing Yang · Ruijie Quan · Yi Yang

Paper PDF Project Page
Zhejiang University   |   Harvard University   |   Nanyang Technological University

## News * **[2025.5.7]** Release **AnyInsertion** v1 text prompt dataset on HuggingFace. * **[2025.4.24]** Release **AnyInsertion** v1 mask prompt dataset on HuggingFace. ## Summary This is the dataset proposed in our paper [**Insert Anything: Image Insertion via In-Context Editing in DiT**](https://arxiv.org/abs/2504.15009) AnyInsertion dataset consists of training and testing subsets. The training set includes 136,385 samples across two prompt types: 58,188 mask-prompt image pairs and 78,197 text-prompt image pairs;the test set includes 158 data pairs: 120 mask-prompt pairs and 38 text-prompt pairs. AnyInsertion dataset covers diverse categories including human subjects, daily necessities, garments, furniture, and various objects. ![alt text](dataset_categories.png) ## Directory ``` data/ ├── text_prompt/ │ ├── train/ │ │ ├── accessory/ │ │ │ ├── ref_image/ # Reference image containing the element to be inserted │ │ │ ├── ref_mask/ # The mask corresponding to the inserted element │ │ │ ├── tar_image/ # Ground truth │ │ │ └── src_image/ # Source images │ │ │ ├── add/ # Source image with the inserted element from Ground Truth removed │ │ │ └── replace/ # Source image where the inserted element in Ground Truth is replaced │ │ ├── object/ │ │ │ ├── ref_image/ │ │ │ ├── ref_mask/ │ │ │ ├── tar_image/ │ │ │ └── src_image/ │ │ │ ├── add/ │ │ │ └── replace/ │ │ └── person/ │ │ ├── ref_image/ │ │ ├── ref_mask/ │ │ ├── tar_image/ │ │ └── src_image/ │ │ ├── add/ │ │ └── replace/ │ └── test/ │ ├── garment/ │ │ ├── ref_image/ │ │ ├── ref_mask/ │ │ ├── tar_image/ │ │ └── src_image/ │ └── object/ │ ├── ref_image/ │ ├── ref_mask/ │ ├── tar_image/ │ └── src_image/ │ ├── mask_prompt/ │ ├── train/ │ │ ├── accessory/ │ │ │ ├── ref_image/ │ │ │ ├── ref_mask/ │ │ │ ├── tar_image/ │ │ │ ├── tar_mask/ # The mask corresponding to the edited area of target image │ │ ├── object/ │ │ │ ├── ref_image/ │ │ │ ├── ref_mask/ │ │ │ ├── tar_image/ │ │ │ ├── tar_mask/ │ │ └── person/ │ │ ├── ref_image/ │ │ ├── ref_mask/ │ │ ├── tar_image/ │ │ ├── tar_mask/ │ └── test/ │ ├── garment/ │ │ ├── ref_image/ │ │ ├── ref_mask/ │ │ ├── tar_image/ │ │ ├── tar_mask/ │ ├── object/ │ │ ├── ref_image/ │ │ ├── ref_mask/ │ │ ├── tar_image/ │ │ ├── tar_mask/ │ └── person/ │ ├── ref_image/ │ ├── ref_mask/ │ ├── tar_image/ │ ├── tar_mask/ ``` ## Example
 
    Ref_image    
Ref_image
 
 
    Ref_mask    
Ref_mask
 
 
    Tar_image    
Tar_image
 
 
    Tar_mask    
Tar_mask
 
 
    Add    
Add
 
 
    Replace    
Replace
 
### Text Prompt Add Prompt: Add [label from `tar_image` (in label.json) ]

Replace Prompt: Replace [label from `src_image` (in src_image/replace/replace_label.json) ] with [label from `tar_image` (in label.json) ] ## Citation ``` @article{song2025insert, title={Insert Anything: Image Insertion via In-Context Editing in DiT}, author={Song, Wensong and Jiang, Hong and Yang, Zongxing and Quan, Ruijie and Yang, Yi}, journal={arXiv preprint arXiv:2504.15009}, year={2025} } ```