Datasets:

Languages:
Indonesian
ArXiv:
File size: 8,197 Bytes
880151b
 
 
 
56a1497
 
880151b
56a1497
 
880151b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a1497
880151b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a1497
880151b
 
 
 
 
 
56a1497
 
 
880151b
56a1497
880151b
 
 
56a1497
880151b
 
 
 
 
 
 
 
56a1497
 
 
880151b
56a1497
880151b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a1497
880151b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a1497
880151b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
from seacrowd.utils import schemas
from seacrowd.utils.common_parser import load_conll_data

from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks

_CITATION = """\
@INPROCEEDINGS{8275098,
  author={Gultom, Yohanes and Wibowo, Wahyu Catur},
  booktitle={2017 International Workshop on Big Data and Information Security (IWBIS)},
  title={Automatic open domain information extraction from Indonesian text},
  year={2017},
  volume={},
  number={},
  pages={23-30},
  doi={10.1109/IWBIS.2017.8275098}}

@article{DBLP:journals/corr/abs-2011-00677,
  author    = {Fajri Koto and
               Afshin Rahimi and
               Jey Han Lau and
               Timothy Baldwin},
  title     = {IndoLEM and IndoBERT: {A} Benchmark Dataset and Pre-trained Language
               Model for Indonesian {NLP}},
  journal   = {CoRR},
  volume    = {abs/2011.00677},
  year      = {2020},
  url       = {https://arxiv.org/abs/2011.00677},
  eprinttype = {arXiv},
  eprint    = {2011.00677},
  timestamp = {Fri, 06 Nov 2020 15:32:47 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2011-00677.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_LOCAL = False
_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "indolem_nerui"

_DESCRIPTION = """\
NER UI is a Named Entity Recognition dataset that contains 2,125 sentences obtained via an annotation assignment in an NLP course at the University of Indonesia in 2016.
The corpus has three named entity classes: location, organisation, and person with training/dev/test distribution: 1,530/170/42 and based on 5-fold cross validation.
"""

_HOMEPAGE = "https://indolem.github.io/"

_LICENSE = "Creative Commons Attribution 4.0"

_URLS = {
    _DATASETNAME: [
        {
            "train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.01.tsv",
            "validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.01.tsv",
            "test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.01.tsv",
        },
        {
            "train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.02.tsv",
            "validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.02.tsv",
            "test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.02.tsv",
        },
        {
            "train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.03.tsv",
            "validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.03.tsv",
            "test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.03.tsv",
        },
        {
            "train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.04.tsv",
            "validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.04.tsv",
            "test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.04.tsv",
        },
        {
            "train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.05.tsv",
            "validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.05.tsv",
            "test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.05.tsv",
        },
    ]
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]

_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class IndolemNERUIDataset(datasets.GeneratorBasedBuilder):
    """NER UI contains 2,125 sentences obtained via an annotation assignment in an NLP course at the University of Indonesia. The corpus has three named entity classes: location, organisation, and person; and based on 5-fold cross validation."""

    label_classes = [
        "O",
        "B-LOCATION",
        "B-ORGANIZATION",
        "B-PERSON",
        "I-LOCATION",
        "I-ORGANIZATION",
        "I-PERSON",
    ]

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"indolem_nerui_source",
            version=datasets.Version(_SOURCE_VERSION),
            description="Indolem NER UI source schema",
            schema="source",
            subset_id=f"indolem_nerui",
        ),
        SEACrowdConfig(
            name=f"indolem_nerui_seacrowd_seq_label",
            version=datasets.Version(_SEACROWD_VERSION),
            description="Indolem NER UI Nusantara schema",
            schema="seacrowd_seq_label",
            subset_id=f"indolem_nerui",
        )
    ] + [
        SEACrowdConfig(
            name=f"indolem_nerui_fold{i}_source",
            version=datasets.Version(_SOURCE_VERSION),
            description="Indolem NER UI source schema",
            schema="source",
            subset_id=f"indolem_nerui_fold{i}",
        )
        for i in range(5)
    ] + [
        SEACrowdConfig(
            name=f"indolem_nerui_fold{i}_seacrowd_seq_label",
            version=datasets.Version(_SEACROWD_VERSION),
            description="Indolem NER UI Nusantara schema",
            schema="seacrowd_seq_label",
            subset_id=f"indolem_nerui_fold{i}",
        )
        for i in range(5)
    ]

    DEFAULT_CONFIG_NAME = "indolem_nerui_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "index": datasets.Value("string"),
                    "tokens": [datasets.Value("string")],
                    "tags": [datasets.Value("string")],
                }
            )
        elif self.config.schema == "seacrowd_seq_label":
            features = schemas.seq_label_features(self.label_classes)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        idx = self._get_fold_index()
        urls = _URLS[_DATASETNAME][idx]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir["test"],
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir["validation"],
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        conll_dataset = load_conll_data(filepath)

        if self.config.schema == "source":
            for i, row in enumerate(conll_dataset):
                ex = {
                    "index": str(i),
                    "tokens": row["sentence"],
                    "tags": row["label"],
                }
                yield i, ex

        elif self.config.schema == "seacrowd_seq_label":
            for i, row in enumerate(conll_dataset):
                ex = {
                    "id": str(i),
                    "tokens": row["sentence"],
                    "labels": row["label"],
                }
                yield i, ex

    def _get_fold_index(self):
        try:
            subset_id = self.config.subset_id
            idx_fold = subset_id.index("_fold")
            file_id = subset_id[(idx_fold + 5):]
            return int(file_id)
        except:
            # get default: fold0 (index 0)
            return 0