Datasets:
ArXiv:
License:
File size: 8,413 Bytes
25bc40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import itertools
import json
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import requests
import zstandard as zstd
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import SCHEMA_TO_FEATURES, TASK_TO_SCHEMA, Licenses, Tasks
_CITATION = r"""\
@inproceedings{aulamo-etal-2023-hplt,
title = "{HPLT}: High Performance Language Technologies",
author = {Aulamo, Mikko and
Bogoychev, Nikolay and
Ji, Shaoxiong and
Nail, Graeme and
Ram{\'\i}rez-S{\'a}nchez, Gema and
Tiedemann, J{\"o}rg and
van der Linde, Jelmer and
Zaragoza, Jaume},
editor = "Nurminen, Mary and
Brenner, Judith and
Koponen, Maarit and
Latomaa, Sirkku and
Mikhailov, Mikhail and
Schierl, Frederike and
Ranasinghe, Tharindu and
Vanmassenhove, Eva and
Vidal, Sergi Alvarez and
Aranberri, Nora and
Nunziatini, Mara and
Escart{\'\i}n, Carla Parra and
Forcada, Mikel and
Popovic, Maja and
Scarton, Carolina and
Moniz, Helena",
booktitle = "Proceedings of the 24th Annual Conference of the European
Association for Machine Translation",
month = jun,
year = "2023",
address = "Tampere, Finland",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2023.eamt-1.61",
pages = "517--518",
abstract = "We describe the High Performance Language Technologies project
(HPLT), a 3-year EU-funded project started in September 2022. HPLT will
build a space combining petabytes of natural language data with large-scale
model training. It will derive monolingual and bilingual datasets from the
Internet Archive and CommonCrawl and build efficient and solid machine
translation (MT) as well as large language models (LLMs). HPLT aims at
providing free, sustainable and reusable datasets, models and workflows at
scale using high-performance computing (HPC).",
}
"""
_DATASETNAME = "hplt"
_DESCRIPTION = """\
The dataset is part of the High Performance Language Technologies project
(HPLT), a 3-year EU-funded project started in September 2022. HPLT derives
monolingual and bilingual datasets from the Internet Archive and CommonCrawl and
builds efficient and solid machine translation (MT) as well as large language
models (LLMs). HPLT aims at providing free, sustainable and reusable datasets,
models and workflows at scale using high-performance computing (HPC).
"""
_HOMEPAGE = "https://hplt-project.org/datasets/v1.2"
_LANGUAGES = {
"ind": "id",
"zlm": "ms",
"tha": "th",
"mya": "my",
"fil": "tl",
"vie": "vi"
}
_LICENSE = Licenses.CC0_1_0.value
_LOCAL = False
_URLS = {
"raw": "https://data.hplt-project.org/one/monotext/{lang}_map.txt",
"deduplicated": "https://data.hplt-project.org/one/monotext/deduplicated/{lang}_map.txt",
"cleaned": "https://data.hplt-project.org/one/monotext/cleaned/{lang}_map.txt",
}
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # ssp
_SOURCE_VERSION = "1.2.0"
_SEACROWD_VERSION = "2024.06.20"
class HpltDataset(datasets.GeneratorBasedBuilder):
"""HPLT derives monolingual and bilingual datasets from the Internet Archive and CommonCrawl"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SUBSETS = ["raw", "deduplicated", "cleaned"]
BUILDER_CONFIGS = []
for lang, subset in list(itertools.product(_LANGUAGES.keys(), SUBSETS)):
subset_id = f"{lang}_{subset}"
BUILDER_CONFIGS += [
SEACrowdConfig(
name=f"{_DATASETNAME}_{subset_id}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} {subset_id} source schema",
schema="source",
subset_id=subset_id,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_{subset_id}_{_SEACROWD_SCHEMA}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} {subset_id} SEACrowd schema",
schema=_SEACROWD_SCHEMA,
subset_id=subset_id,
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_mya_cleaned_source" # smallest w.r.t. size
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("int32"),
"document_lang": datasets.Value("string"),
"scores": datasets.Sequence(datasets.Value("float")),
"langs": datasets.Sequence(datasets.Value("string")),
"text": datasets.Value("string"),
"url": datasets.Value("string"),
"collection": datasets.Value("string"),
}
)
elif self.config.schema == _SEACROWD_SCHEMA:
features = SCHEMA_TO_FEATURES[
TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]
] # ssp_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators. Data is not yet extracted for efficient generation."""
lang, subset = self.config.subset_id.split("_")
lang = _LANGUAGES[lang]
map_url = _URLS[subset].format(lang=lang)
response = requests.get(map_url, timeout=10)
if response:
data_urls = response.text.strip().split("\n")
data_urls = [url for url in data_urls if url.endswith(".jsonl.zst")]
else:
raise requests.exceptions.HTTPError(
f"Non-success status code: {response.status_code}"
)
data_paths = list(map(Path, dl_manager.download(data_urls)))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_paths": data_paths,
},
),
]
def _generate_examples(self, data_paths: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
key = 0
for data_path in data_paths:
with open(data_path, "rb") as f:
# Zstandard decompression
dctx = zstd.ZstdDecompressor()
reader = dctx.stream_reader(f)
text_io = io.TextIOWrapper(reader, encoding="utf-8")
# read jsonl file by line and yield
for line in text_io:
data = json.loads(line)
if self.config.schema == "source":
yield key, {
"id": key,
"document_lang": data["document_lang"],
"scores": data["scores"],
"langs": data["langs"],
"text": data["text"],
"url": data["url"],
"collection": data["collection"],
}
elif self.config.schema == _SEACROWD_SCHEMA:
yield key, {
"id": str(key),
"text": data["text"],
}
key += 1
|