File size: 9,599 Bytes
0369c71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
from typing import Dict, List, Tuple
import datasets
import jsonlines as jl
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{thapliyal-etal-2022-crossmodal,
title = "Crossmodal-3600: A Massively Multilingual Multimodal Evaluation Dataset",
author = "Thapliyal, Ashish V. and
Pont Tuset, Jordi and
Chen, Xi and
Soricut, Radu",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.45",
doi = "10.18653/v1/2022.emnlp-main.45",
pages = "715--729",
}
"""
_DATASETNAME = "cc3m_35l"
_DESCRIPTION = """\
CC3M-35L is created by translating Conceptual Captions 3M (Sharma et al., 2018),
originally in English, to the other 34 languages using Google's machine translation API.
"""
_HOMEPAGE = "https://google.github.io/crossmodal-3600/"
_LICENSE = Licenses.CC_BY_4_0.value
# the image URLs are contained in tsv file together with the original captions which can be downloaded locally using google account.
# those tsv file originally can be found and downloaded from this page https://ai.google.com/research/ConceptualCaptions/download
# there are no direct image folder ready, so it needs to be downloaded one by one
# some warnings may occur when downloading due to reasons such as security certificate and others
_URLS = {
"trans_train": "https://storage.googleapis.com/crossmodal-3600/cc3m_mt_train.jsonl.gz",
"trans_dev": "https://storage.googleapis.com/crossmodal-3600/cc3m_mt_dev.jsonl.gz",
}
_SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_LANGUAGES = ["fil", "ind", "tha", "vie"]
_LOCAL = True
class CC3M35L(datasets.GeneratorBasedBuilder):
"""
CC3M-35L is created by translating Conceptual Captions 3M (Sharma et al., 2018),
originally in English, to the other 34 languages using Google's machine translation API.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [SEACrowdConfig(name=f"cc3m_35l_{lang}_source", version=datasets.Version(_SOURCE_VERSION), description=f"cc3m_35l_{lang} source schema", schema="source", subset_id=f"cc3m_35l_{lang}",) for lang in _LANGUAGES] + [
SEACrowdConfig(
name=f"{_DATASETNAME}_{lang}_seacrowd_imtext",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME}_{lang} SEACrowd schema",
schema="seacrowd_imtext",
subset_id=f"{_DATASETNAME}_{lang}",
)
for lang in _LANGUAGES
]
DEFAULT_CONFIG_NAME = "cc3m_35l_id_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"image_paths": datasets.Value("string"),
"src_lang": datasets.Value("string"),
"caption_tokenized": datasets.Value("string"),
"trg_lang": datasets.Value("string"),
"translation_tokenized": datasets.Value("string"),
"backtranslation_tokenized": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_imtext":
features = schemas.image_text_features()
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def fill_img_path(self, df: pd.DataFrame, line: dict):
exceptions = []
selected_row = df.query('caption==@line["caption_tokenized"]')
# it may return several rows, skip of empty
if not selected_row.empty:
# for each row, download the image, use its path and put the translation
for idx, row in selected_row.iterrows():
row["trans_caption"] = line["translation_tokenized"]
row["backtrans_caption"] = line["backtranslation_tokenized"]
# if the image cannot be downloaded for some reason, skip it
# may cause difference in the total data each run
try:
row["img_path"] = datasets.DownloadManager().download(row["img_url"])
except:
exceptions.append(idx)
return selected_row, exceptions
def is_target(self, line: dict, trg_lang: str):
if line["trg_lang"] == trg_lang:
return line
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
dev_path = dl_manager.download_and_extract(_URLS["trans_dev"])
train_path = dl_manager.download_and_extract(_URLS["trans_train"])
if self.config.data_dir is None:
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
else:
data_dir = self.config.data_dir
# read tsv from local train and validation files
gcc_val = os.path.join(data_dir, "Validation_GCC-1.1.0-Validation.tsv")
gcc_train = os.path.join(data_dir, "Train_GCC-training.tsv")
# make it into pandas dataframe
colnames = ["caption", "img_url"]
gcc_val_df = pd.read_csv(gcc_val, sep="\t", header=None, names=colnames)
gcc_train_df = pd.read_csv(gcc_train, sep="\t", header=None, names=colnames)
# add new column to keep the downloaded image path
gcc_val_df["img_path"] = None
gcc_train_df["img_path"] = None
# add new column to keep the translated caption
gcc_val_df["trans_caption"] = None
gcc_train_df["trans_caption"] = None
gcc_val_df["backtrans_caption"] = None
gcc_train_df["backtrans_caption"] = None
# match the original captions in the translated set to the dataframe caption
# download the images from the URL and use it as the filepath
train_exceptions = []
val_exceptions = []
current_lang = self.config.subset_id.split("_")[2]
val_caption_targets = []
train_caption_targets = []
# filter validation data
with jl.open(os.path.join(dev_path), mode="r") as j:
val_caption_targets = [line for line in j if line["trg_lang"] == current_lang]
#for line in val_caption_targets[:100]: # this was for debugging only
for line in val_caption_targets:
res = self.fill_img_path(gcc_train_df, line)
val_exceptions.extend(res[1])
gcc_val_df.update(res[0])
# clean the memory
val_caption_targets = []
# filter train data
with jl.open(os.path.join(train_path), mode="r") as j:
train_caption_targets = [line for line in j if line["trg_lang"] == current_lang]
#for line in train_caption_targets[:100]: # this was for debugging only
for line in train_caption_targets:
res = self.fill_img_path(gcc_val_df, line)
train_exceptions.extend(res[1])
gcc_train_df.update(res[0])
# clean the memory
train_caption_targets = []
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": gcc_train_df,
"exceptions": train_exceptions,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": gcc_val_df,
"exceptions": val_exceptions,
},
),
]
def _generate_examples(self, filepath: dict, exceptions: list) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
for idx, row in filepath.iterrows():
if idx not in exceptions:
if self.config.schema == "source":
yield idx, {
"id": str(idx),
"image_paths": row["img_path"],
"src_lang": "en",
"caption_tokenized": row["caption"],
"trg_lang": self.config.subset_id.split("_")[2],
"translation_tokenized": row["trans_caption"],
"backtranslation_tokenized": row["backtrans_caption"],
}
elif self.config.schema == "seacrowd_imtext":
yield idx, {
"id": str(idx),
"image_paths": [row["img_path"]],
"texts": row["trans_caption"],
"metadata": {
"context": None,
"labels": None,
},
}
else:
raise ValueError(f"Invalid config: {self.config.name}")
|