Datasets:

ArXiv:
License:
File size: 9,599 Bytes
0369c71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
from typing import Dict, List, Tuple

import datasets
import jsonlines as jl
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@inproceedings{thapliyal-etal-2022-crossmodal,
    title = "Crossmodal-3600: A Massively Multilingual Multimodal Evaluation Dataset",
    author = "Thapliyal, Ashish V.  and
      Pont Tuset, Jordi  and
      Chen, Xi  and
      Soricut, Radu",
    editor = "Goldberg, Yoav  and
      Kozareva, Zornitsa  and
      Zhang, Yue",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, United Arab Emirates",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.emnlp-main.45",
    doi = "10.18653/v1/2022.emnlp-main.45",
    pages = "715--729",
}
"""

_DATASETNAME = "cc3m_35l"

_DESCRIPTION = """\
    CC3M-35L is created by translating Conceptual Captions 3M (Sharma et al., 2018),
    originally in English, to the other 34 languages using Google's machine translation API.
"""

_HOMEPAGE = "https://google.github.io/crossmodal-3600/"

_LICENSE = Licenses.CC_BY_4_0.value

# the image URLs are contained in tsv file together with the original captions which can be downloaded locally using google account.
# those tsv file originally can be found and downloaded from this page https://ai.google.com/research/ConceptualCaptions/download
# there are no direct image folder ready, so it needs to be downloaded one by one
# some warnings may occur when downloading due to reasons such as security certificate and others
_URLS = {
    "trans_train": "https://storage.googleapis.com/crossmodal-3600/cc3m_mt_train.jsonl.gz",
    "trans_dev": "https://storage.googleapis.com/crossmodal-3600/cc3m_mt_dev.jsonl.gz",
}

_SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"

_LANGUAGES = ["fil", "ind", "tha", "vie"]

_LOCAL = True


class CC3M35L(datasets.GeneratorBasedBuilder):
    """
    CC3M-35L is created by translating Conceptual Captions 3M (Sharma et al., 2018),
    originally in English, to the other 34 languages using Google's machine translation API.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [SEACrowdConfig(name=f"cc3m_35l_{lang}_source", version=datasets.Version(_SOURCE_VERSION), description=f"cc3m_35l_{lang} source schema", schema="source", subset_id=f"cc3m_35l_{lang}",) for lang in _LANGUAGES] + [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{lang}_seacrowd_imtext",
            version=datasets.Version(_SEACROWD_VERSION),
            description=f"{_DATASETNAME}_{lang} SEACrowd schema",
            schema="seacrowd_imtext",
            subset_id=f"{_DATASETNAME}_{lang}",
        )
        for lang in _LANGUAGES
    ]

    DEFAULT_CONFIG_NAME = "cc3m_35l_id_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "image_paths": datasets.Value("string"),
                    "src_lang": datasets.Value("string"),
                    "caption_tokenized": datasets.Value("string"),
                    "trg_lang": datasets.Value("string"),
                    "translation_tokenized": datasets.Value("string"),
                    "backtranslation_tokenized": datasets.Value("string"),
                }
            )
        elif self.config.schema == "seacrowd_imtext":
            features = schemas.image_text_features()

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def fill_img_path(self, df: pd.DataFrame, line: dict):
        exceptions = []
        selected_row = df.query('caption==@line["caption_tokenized"]')
        # it may return several rows, skip of empty
        if not selected_row.empty:
            # for each row, download the image, use its path and put the translation
            for idx, row in selected_row.iterrows():
                row["trans_caption"] = line["translation_tokenized"]
                row["backtrans_caption"] = line["backtranslation_tokenized"]
                # if the image cannot be downloaded for some reason, skip it
                # may cause difference in the total data each run
                try:
                    row["img_path"] = datasets.DownloadManager().download(row["img_url"])
                except:
                    exceptions.append(idx)

        return selected_row, exceptions

    def is_target(self, line: dict, trg_lang: str):
        if line["trg_lang"] == trg_lang:
            return line

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        dev_path = dl_manager.download_and_extract(_URLS["trans_dev"])
        train_path = dl_manager.download_and_extract(_URLS["trans_train"])

        if self.config.data_dir is None:
            raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
        else:
            data_dir = self.config.data_dir

        # read tsv from local train and validation files
        gcc_val = os.path.join(data_dir, "Validation_GCC-1.1.0-Validation.tsv")
        gcc_train = os.path.join(data_dir, "Train_GCC-training.tsv")

        # make it into pandas dataframe
        colnames = ["caption", "img_url"]
        gcc_val_df = pd.read_csv(gcc_val, sep="\t", header=None, names=colnames)
        gcc_train_df = pd.read_csv(gcc_train, sep="\t", header=None, names=colnames)

        # add new column to keep the downloaded image path
        gcc_val_df["img_path"] = None
        gcc_train_df["img_path"] = None

        # add new column to keep the translated caption
        gcc_val_df["trans_caption"] = None
        gcc_train_df["trans_caption"] = None

        gcc_val_df["backtrans_caption"] = None
        gcc_train_df["backtrans_caption"] = None

        # match the original captions in the translated set to the dataframe caption
        # download the images from the URL and use it as the filepath
        train_exceptions = []
        val_exceptions = []

        current_lang = self.config.subset_id.split("_")[2]
        val_caption_targets = []
        train_caption_targets = []

        # filter validation data
        with jl.open(os.path.join(dev_path), mode="r") as j:
            val_caption_targets = [line for line in j if line["trg_lang"] == current_lang]
            
            #for line in val_caption_targets[:100]: # this was for debugging only
            for line in val_caption_targets:
                res = self.fill_img_path(gcc_train_df, line)
                val_exceptions.extend(res[1])
                gcc_val_df.update(res[0])
            
        # clean the memory
        val_caption_targets = []

        # filter train data
        with jl.open(os.path.join(train_path), mode="r") as j:
            train_caption_targets = [line for line in j if line["trg_lang"] == current_lang]
            
                
            #for line in train_caption_targets[:100]: # this was for debugging only
            for line in train_caption_targets:
                res = self.fill_img_path(gcc_val_df, line)
                train_exceptions.extend(res[1])
                gcc_train_df.update(res[0])

        # clean the memory
        train_caption_targets = []

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": gcc_train_df,
                    "exceptions": train_exceptions,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": gcc_val_df,
                    "exceptions": val_exceptions,
                },
            ),
        ]

    def _generate_examples(self, filepath: dict, exceptions: list) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        for idx, row in filepath.iterrows():
            if idx not in exceptions:
                if self.config.schema == "source":
                    yield idx, {
                        "id": str(idx),
                        "image_paths": row["img_path"],
                        "src_lang": "en",
                        "caption_tokenized": row["caption"],
                        "trg_lang": self.config.subset_id.split("_")[2],
                        "translation_tokenized": row["trans_caption"],
                        "backtranslation_tokenized": row["backtrans_caption"],
                    }

                elif self.config.schema == "seacrowd_imtext":
                    yield idx, {
                        "id": str(idx),
                        "image_paths": [row["img_path"]],
                        "texts": row["trans_caption"],
                        "metadata": {
                            "context": None,
                            "labels": None,
                        },
                    }

                else:
                    raise ValueError(f"Invalid config: {self.config.name}")