Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,5 +1,444 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
dataset_info:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
features:
|
4 |
- name: sample
|
5 |
dtype: binary
|
@@ -9,9 +448,67 @@ dataset_info:
|
|
9 |
num_examples: 400
|
10 |
download_size: 813895818
|
11 |
dataset_size: 1290091704
|
12 |
-
configs:
|
13 |
-
- config_name: default
|
14 |
-
data_files:
|
15 |
-
- split: all_samples
|
16 |
-
path: data/all_samples-*
|
17 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
size_categories:
|
4 |
+
- n<1K
|
5 |
+
task_categories:
|
6 |
+
- graph-ml
|
7 |
+
pretty_name: 2D external aero CFD RANS datasets, under geometrical variations
|
8 |
+
tags:
|
9 |
+
- physics learning
|
10 |
+
- geometry learning
|
11 |
+
configs:
|
12 |
+
- config_name: default
|
13 |
+
data_files:
|
14 |
+
- split: all_samples
|
15 |
+
path: data/all_samples-*
|
16 |
dataset_info:
|
17 |
+
description:
|
18 |
+
legal:
|
19 |
+
owner: Safran
|
20 |
+
license: CC-by-SA 4.0
|
21 |
+
data_production:
|
22 |
+
type: simulation
|
23 |
+
physics: 2D stationary RANS
|
24 |
+
simulator: elsA
|
25 |
+
split:
|
26 |
+
train:
|
27 |
+
- 0
|
28 |
+
- 1
|
29 |
+
- 2
|
30 |
+
- 3
|
31 |
+
- 4
|
32 |
+
- 5
|
33 |
+
- 6
|
34 |
+
- 7
|
35 |
+
- 8
|
36 |
+
- 9
|
37 |
+
- 10
|
38 |
+
- 11
|
39 |
+
- 12
|
40 |
+
- 13
|
41 |
+
- 14
|
42 |
+
- 15
|
43 |
+
- 16
|
44 |
+
- 17
|
45 |
+
- 18
|
46 |
+
- 19
|
47 |
+
- 20
|
48 |
+
- 21
|
49 |
+
- 22
|
50 |
+
- 23
|
51 |
+
- 24
|
52 |
+
- 25
|
53 |
+
- 26
|
54 |
+
- 27
|
55 |
+
- 28
|
56 |
+
- 29
|
57 |
+
- 30
|
58 |
+
- 31
|
59 |
+
- 32
|
60 |
+
- 33
|
61 |
+
- 34
|
62 |
+
- 35
|
63 |
+
- 36
|
64 |
+
- 37
|
65 |
+
- 38
|
66 |
+
- 39
|
67 |
+
- 40
|
68 |
+
- 41
|
69 |
+
- 42
|
70 |
+
- 43
|
71 |
+
- 44
|
72 |
+
- 45
|
73 |
+
- 46
|
74 |
+
- 47
|
75 |
+
- 48
|
76 |
+
- 49
|
77 |
+
- 50
|
78 |
+
- 51
|
79 |
+
- 52
|
80 |
+
- 53
|
81 |
+
- 54
|
82 |
+
- 55
|
83 |
+
- 56
|
84 |
+
- 57
|
85 |
+
- 58
|
86 |
+
- 59
|
87 |
+
- 60
|
88 |
+
- 61
|
89 |
+
- 62
|
90 |
+
- 63
|
91 |
+
- 64
|
92 |
+
- 65
|
93 |
+
- 66
|
94 |
+
- 67
|
95 |
+
- 68
|
96 |
+
- 69
|
97 |
+
- 70
|
98 |
+
- 71
|
99 |
+
- 72
|
100 |
+
- 73
|
101 |
+
- 74
|
102 |
+
- 75
|
103 |
+
- 76
|
104 |
+
- 77
|
105 |
+
- 78
|
106 |
+
- 79
|
107 |
+
- 80
|
108 |
+
- 81
|
109 |
+
- 82
|
110 |
+
- 83
|
111 |
+
- 84
|
112 |
+
- 85
|
113 |
+
- 86
|
114 |
+
- 87
|
115 |
+
- 88
|
116 |
+
- 89
|
117 |
+
- 90
|
118 |
+
- 91
|
119 |
+
- 92
|
120 |
+
- 93
|
121 |
+
- 94
|
122 |
+
- 95
|
123 |
+
- 96
|
124 |
+
- 97
|
125 |
+
- 98
|
126 |
+
- 99
|
127 |
+
- 100
|
128 |
+
- 101
|
129 |
+
- 102
|
130 |
+
- 103
|
131 |
+
- 104
|
132 |
+
- 105
|
133 |
+
- 106
|
134 |
+
- 107
|
135 |
+
- 108
|
136 |
+
- 109
|
137 |
+
- 110
|
138 |
+
- 111
|
139 |
+
- 112
|
140 |
+
- 113
|
141 |
+
- 114
|
142 |
+
- 115
|
143 |
+
- 116
|
144 |
+
- 117
|
145 |
+
- 118
|
146 |
+
- 119
|
147 |
+
- 120
|
148 |
+
- 121
|
149 |
+
- 122
|
150 |
+
- 123
|
151 |
+
- 124
|
152 |
+
- 125
|
153 |
+
- 126
|
154 |
+
- 127
|
155 |
+
- 128
|
156 |
+
- 129
|
157 |
+
- 130
|
158 |
+
- 131
|
159 |
+
- 132
|
160 |
+
- 133
|
161 |
+
- 134
|
162 |
+
- 135
|
163 |
+
- 136
|
164 |
+
- 137
|
165 |
+
- 138
|
166 |
+
- 139
|
167 |
+
- 140
|
168 |
+
- 141
|
169 |
+
- 142
|
170 |
+
- 143
|
171 |
+
- 144
|
172 |
+
- 145
|
173 |
+
- 146
|
174 |
+
- 147
|
175 |
+
- 148
|
176 |
+
- 149
|
177 |
+
- 150
|
178 |
+
- 151
|
179 |
+
- 152
|
180 |
+
- 153
|
181 |
+
- 154
|
182 |
+
- 155
|
183 |
+
- 156
|
184 |
+
- 157
|
185 |
+
- 158
|
186 |
+
- 159
|
187 |
+
- 160
|
188 |
+
- 161
|
189 |
+
- 162
|
190 |
+
- 163
|
191 |
+
- 164
|
192 |
+
- 165
|
193 |
+
- 166
|
194 |
+
- 167
|
195 |
+
- 168
|
196 |
+
- 169
|
197 |
+
- 170
|
198 |
+
- 171
|
199 |
+
- 172
|
200 |
+
- 173
|
201 |
+
- 174
|
202 |
+
- 175
|
203 |
+
- 176
|
204 |
+
- 177
|
205 |
+
- 178
|
206 |
+
- 179
|
207 |
+
- 180
|
208 |
+
- 181
|
209 |
+
- 182
|
210 |
+
- 183
|
211 |
+
- 184
|
212 |
+
- 185
|
213 |
+
- 186
|
214 |
+
- 187
|
215 |
+
- 188
|
216 |
+
- 189
|
217 |
+
- 190
|
218 |
+
- 191
|
219 |
+
- 192
|
220 |
+
- 193
|
221 |
+
- 194
|
222 |
+
- 195
|
223 |
+
- 196
|
224 |
+
- 197
|
225 |
+
- 198
|
226 |
+
- 199
|
227 |
+
- 200
|
228 |
+
- 201
|
229 |
+
- 202
|
230 |
+
- 203
|
231 |
+
- 204
|
232 |
+
- 205
|
233 |
+
- 206
|
234 |
+
- 207
|
235 |
+
- 208
|
236 |
+
- 209
|
237 |
+
- 210
|
238 |
+
- 211
|
239 |
+
- 212
|
240 |
+
- 213
|
241 |
+
- 214
|
242 |
+
- 215
|
243 |
+
- 216
|
244 |
+
- 217
|
245 |
+
- 218
|
246 |
+
- 219
|
247 |
+
- 220
|
248 |
+
- 221
|
249 |
+
- 222
|
250 |
+
- 223
|
251 |
+
- 224
|
252 |
+
- 225
|
253 |
+
- 226
|
254 |
+
- 227
|
255 |
+
- 228
|
256 |
+
- 229
|
257 |
+
- 230
|
258 |
+
- 231
|
259 |
+
- 232
|
260 |
+
- 233
|
261 |
+
- 234
|
262 |
+
- 235
|
263 |
+
- 236
|
264 |
+
- 237
|
265 |
+
- 238
|
266 |
+
- 239
|
267 |
+
- 240
|
268 |
+
- 241
|
269 |
+
- 242
|
270 |
+
- 243
|
271 |
+
- 244
|
272 |
+
- 245
|
273 |
+
- 246
|
274 |
+
- 247
|
275 |
+
- 248
|
276 |
+
- 249
|
277 |
+
- 250
|
278 |
+
- 251
|
279 |
+
- 252
|
280 |
+
- 253
|
281 |
+
- 254
|
282 |
+
- 255
|
283 |
+
- 256
|
284 |
+
- 257
|
285 |
+
- 258
|
286 |
+
- 259
|
287 |
+
- 260
|
288 |
+
- 261
|
289 |
+
- 262
|
290 |
+
- 263
|
291 |
+
- 264
|
292 |
+
- 265
|
293 |
+
- 266
|
294 |
+
- 267
|
295 |
+
- 268
|
296 |
+
- 269
|
297 |
+
- 270
|
298 |
+
- 271
|
299 |
+
- 272
|
300 |
+
- 273
|
301 |
+
- 274
|
302 |
+
- 275
|
303 |
+
- 276
|
304 |
+
- 277
|
305 |
+
- 278
|
306 |
+
- 279
|
307 |
+
- 280
|
308 |
+
- 281
|
309 |
+
- 282
|
310 |
+
- 283
|
311 |
+
- 284
|
312 |
+
- 285
|
313 |
+
- 286
|
314 |
+
- 287
|
315 |
+
- 288
|
316 |
+
- 289
|
317 |
+
- 290
|
318 |
+
- 291
|
319 |
+
- 292
|
320 |
+
- 293
|
321 |
+
- 294
|
322 |
+
- 295
|
323 |
+
- 296
|
324 |
+
- 297
|
325 |
+
- 298
|
326 |
+
- 299
|
327 |
+
test:
|
328 |
+
- 300
|
329 |
+
- 301
|
330 |
+
- 302
|
331 |
+
- 303
|
332 |
+
- 304
|
333 |
+
- 305
|
334 |
+
- 306
|
335 |
+
- 307
|
336 |
+
- 308
|
337 |
+
- 309
|
338 |
+
- 310
|
339 |
+
- 311
|
340 |
+
- 312
|
341 |
+
- 313
|
342 |
+
- 314
|
343 |
+
- 315
|
344 |
+
- 316
|
345 |
+
- 317
|
346 |
+
- 318
|
347 |
+
- 319
|
348 |
+
- 320
|
349 |
+
- 321
|
350 |
+
- 322
|
351 |
+
- 323
|
352 |
+
- 324
|
353 |
+
- 325
|
354 |
+
- 326
|
355 |
+
- 327
|
356 |
+
- 328
|
357 |
+
- 329
|
358 |
+
- 330
|
359 |
+
- 331
|
360 |
+
- 332
|
361 |
+
- 333
|
362 |
+
- 334
|
363 |
+
- 335
|
364 |
+
- 336
|
365 |
+
- 337
|
366 |
+
- 338
|
367 |
+
- 339
|
368 |
+
- 340
|
369 |
+
- 341
|
370 |
+
- 342
|
371 |
+
- 343
|
372 |
+
- 344
|
373 |
+
- 345
|
374 |
+
- 346
|
375 |
+
- 347
|
376 |
+
- 348
|
377 |
+
- 349
|
378 |
+
- 350
|
379 |
+
- 351
|
380 |
+
- 352
|
381 |
+
- 353
|
382 |
+
- 354
|
383 |
+
- 355
|
384 |
+
- 356
|
385 |
+
- 357
|
386 |
+
- 358
|
387 |
+
- 359
|
388 |
+
- 360
|
389 |
+
- 361
|
390 |
+
- 362
|
391 |
+
- 363
|
392 |
+
- 364
|
393 |
+
- 365
|
394 |
+
- 366
|
395 |
+
- 367
|
396 |
+
- 368
|
397 |
+
- 369
|
398 |
+
- 370
|
399 |
+
- 371
|
400 |
+
- 372
|
401 |
+
- 373
|
402 |
+
- 374
|
403 |
+
- 375
|
404 |
+
- 376
|
405 |
+
- 377
|
406 |
+
- 378
|
407 |
+
- 379
|
408 |
+
- 380
|
409 |
+
- 381
|
410 |
+
- 382
|
411 |
+
- 383
|
412 |
+
- 384
|
413 |
+
- 385
|
414 |
+
- 386
|
415 |
+
- 387
|
416 |
+
- 388
|
417 |
+
- 389
|
418 |
+
- 390
|
419 |
+
- 391
|
420 |
+
- 392
|
421 |
+
- 393
|
422 |
+
- 394
|
423 |
+
- 395
|
424 |
+
- 396
|
425 |
+
- 397
|
426 |
+
- 398
|
427 |
+
- 399
|
428 |
+
task: regression
|
429 |
+
in_scalars_names: []
|
430 |
+
out_scalars_names: []
|
431 |
+
in_timeseries_names: []
|
432 |
+
out_timeseries_names: []
|
433 |
+
in_fields_names: []
|
434 |
+
out_fields_names:
|
435 |
+
- Mach
|
436 |
+
- Pressure
|
437 |
+
- Velocity-x
|
438 |
+
- Velocity-y
|
439 |
+
in_meshes_names:
|
440 |
+
- /Base_2_2/Zone
|
441 |
+
out_meshes_names: []
|
442 |
features:
|
443 |
- name: sample
|
444 |
dtype: binary
|
|
|
448 |
num_examples: 400
|
449 |
download_size: 813895818
|
450 |
dataset_size: 1290091704
|
|
|
|
|
|
|
|
|
|
|
451 |
---
|
452 |
+
|
453 |
+
# Dataset Card
|
454 |
+

|
455 |
+
|
456 |
+
This dataset contains a single huggingface split, named 'all_samples'.
|
457 |
+
|
458 |
+
The samples contains a single huggingface feature, named called "sample".
|
459 |
+
|
460 |
+
Samples are instances of [plaid.containers.sample.Sample](https://plaid-lib.readthedocs.io/en/latest/autoapi/plaid/containers/sample/index.html#plaid.containers.sample.Sample).
|
461 |
+
Mesh objects included in samples follow the [CGNS](https://cgns.github.io/) standard, and can be converted in
|
462 |
+
[Muscat.Containers.Mesh.Mesh](https://muscat.readthedocs.io/en/latest/_source/Muscat.Containers.Mesh.html#Muscat.Containers.Mesh.Mesh).
|
463 |
+
|
464 |
+
|
465 |
+
Example of commands:
|
466 |
+
```python
|
467 |
+
import pickle
|
468 |
+
from datasets import load_dataset
|
469 |
+
from plaid.containers.sample import Sample
|
470 |
+
|
471 |
+
# Load the dataset
|
472 |
+
dataset = load_dataset("chanel/dataset", split="all_samples")
|
473 |
+
|
474 |
+
# Get the first sample of the first split
|
475 |
+
split_names = list(dataset.description["split"].keys())
|
476 |
+
ids_split_0 = dataset.description["split"][split_names[0]]
|
477 |
+
sample_0_split_0 = dataset[ids_split_0[0]]["sample"]
|
478 |
+
plaid_sample = Sample.model_validate(pickle.loads(sample_0_split_0))
|
479 |
+
print("type(plaid_sample) =", type(plaid_sample))
|
480 |
+
|
481 |
+
print("plaid_sample =", plaid_sample)
|
482 |
+
|
483 |
+
# Get a field from the sample
|
484 |
+
field_names = plaid_sample.get_field_names()
|
485 |
+
field = plaid_sample.get_field(field_names[0])
|
486 |
+
print("field_names[0] =", field_names[0])
|
487 |
+
|
488 |
+
print("field.shape =", field.shape)
|
489 |
+
|
490 |
+
# Get the mesh and convert it to Muscat
|
491 |
+
from Muscat.Bridges import CGNSBridge
|
492 |
+
CGNS_tree = plaid_sample.get_mesh()
|
493 |
+
mesh = CGNSBridge.CGNSToMesh(CGNS_tree)
|
494 |
+
print(mesh)
|
495 |
+
```
|
496 |
+
|
497 |
+
## Dataset Details
|
498 |
+
|
499 |
+
### Dataset Description
|
500 |
+
|
501 |
+
|
502 |
+
This dataset contains 2D external aero CFD RANS solutions, under geometrical variations (correspond to "large" in the Zenodo repository).
|
503 |
+
|
504 |
+
The variablity in the samples is the geometry (mesh). Outputs of interest are 4 fields. Each sample have been computed on large refined meshes, which have been cut close to the profil, and adapted (remeshed) using an anisotropic metric based on the output fields of interest.
|
505 |
+
|
506 |
+
Dataset created using the [PLAID](https://plaid-lib.readthedocs.io/) library and datamodel, version 0.1.
|
507 |
+
|
508 |
+
- **Language:** [PLAID](https://plaid-lib.readthedocs.io/)
|
509 |
+
- **License:** cc-by-sa-4.0
|
510 |
+
- **Owner:** Safran
|
511 |
+
|
512 |
+
### Dataset Sources
|
513 |
+
|
514 |
+
- **Repository:** [Zenodo](https://zenodo.org/records/14840426)
|