Datasets:
File size: 10,985 Bytes
8e682c8 3b4fca5 ce5aeef 8e682c8 945982d ce5aeef 945982d ce5aeef 945982d ce5aeef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
---
license: cc-by-sa-4.0
dataset_info:
features:
- name: category
dtype: string
- name: size
dtype: int32
- name: id
dtype: string
- name: eid
dtype: string
- name: original_triple_sets
list:
- name: subject
dtype: string
- name: property
dtype: string
- name: object
dtype: string
- name: modified_triple_sets
list:
- name: subject
dtype: string
- name: property
dtype: string
- name: object
dtype: string
- name: shape
dtype: string
- name: shape_type
dtype: string
- name: lex
sequence:
- name: comment
dtype: string
- name: lid
dtype: string
- name: text
dtype: string
- name: lang
dtype: string
- name: test_category
dtype: string
- name: dbpedia_links
sequence: string
- name: links
sequence: string
- name: graph
list:
list: string
- name: main_entity
dtype: string
- name: mappings
list:
- name: modified
dtype: string
- name: readable
dtype: string
- name: graph
dtype: string
- name: dialogue
list:
- name: question
list:
- name: source
dtype: string
- name: text
dtype: string
- name: graph_query
dtype: string
- name: readable_query
dtype: string
- name: graph_answer
list: string
- name: readable_answer
list: string
- name: type
list: string
splits:
- name: train
num_bytes: 33200723
num_examples: 10016
- name: validation
num_bytes: 4196972
num_examples: 1264
- name: test
num_bytes: 4990595
num_examples: 1417
- name: challenge
num_bytes: 420551
num_examples: 100
download_size: 9637685
dataset_size: 42808841
task_categories:
- conversational
- question-answering
- text-generation
tags:
- qa
- knowledge-graph
- sparql
language:
- en
---
# Dataset Card for WEBNLG-QA
## Dataset Description
- **Paper:** [SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications (AACL-IJCNLP 2022)](https://aclanthology.org/2022.aacl-main.11/)
- **Point of Contact:** GwΓ©nolΓ© LecorvΓ©
### Dataset Summary
WEBNLG-QA is a conversational question answering dataset grounded on WEBNLG. It consists in a set of question-answering dialogues (follow-up question-answer pairs) based on short paragraphs of text. Each paragraph is associated a knowledge graph (from WEBNLG). The questions are associated with SPARQL queries.
### Supported tasks
* Knowledge-based question-answering
* SPARQL-to-Text conversion
#### Knowledge based question-answering
Below is an example of dialogue:
- Q1: What is used as an instrument is Sludge Metal or in Post-metal?
- A1: Singing, Synthesizer
- Q2: And what about Sludge Metal in particular?
- A2: Singing
- Q3: Does the Year of No Light album Nord belong to this genre?
- A3: Yes.
#### SPARQL-to-Text Question Generation
SPARQL-to-Text question generation refers to the task of converting a SPARQL query into a natural language question, eg:
```SQL
SELECT (COUNT(?country) as ?answer)
WHERE { ?country property:member_of resource:Europe .
?country property:population ?n .
FILTER ( ?n > 10000000 )
}
```
could be converted into:
```txt
How many European countries have more than 10 million inhabitants?
```
## Dataset Structure
### Types of questions
Comparison of question types compared to related datasets:
| | | [SimpleQuestions](https://huggingface.co/datasets/OrangeInnov/simplequestions-sparqltotext) | [ParaQA](https://huggingface.co/datasets/OrangeInnov/paraqa-sparqltotext) | [LC-QuAD 2.0](https://huggingface.co/datasets/OrangeInnov/lcquad_2.0-sparqltotext) | [CSQA](https://huggingface.co/datasets/OrangeInnov/csqa-sparqltotext) | [WebNLQ-QA](https://huggingface.co/datasets/OrangeInnov/webnlg-qa) |
|--------------------------|-----------------|:---------------:|:------:|:-----------:|:----:|:---------:|
| **Number of triplets in query** | 1 | β | β | β | β | β |
| | 2 | | β | β | β | β |
| | More | | | β | β | β |
| **Logical connector between triplets** | Conjunction | β | β | β | β | β |
| | Disjunction | | | | β | β |
| | Exclusion | | | | β | β |
| **Topology of the query graph** | Direct | β | β | β | β | β |
| | Sibling | | β | β | β | β |
| | Chain | | β | β | β | β |
| | Mixed | | | β | | β |
| | Other | | β | β | β | β |
| **Variable typing in the query** | None | β | β | β | β | β |
| | Target variable | | β | β | β | β |
| | Internal variable | | β | β | β | β |
| **Comparisons clauses** | None | β | β | β | β | β |
| | String | | | β | | β |
| | Number | | | β | β | β |
| | Date | | | β | | β |
| **Superlative clauses** | No | β | β | β | β | β |
| | Yes | | | | β | |
| **Answer type** | Entity (open) | β | β | β | β | β |
| | Entity (closed) | | | | β | β |
| | Number | | | β | β | β |
| | Boolean | | β | β | β | β |
| **Answer cardinality** | 0 (unanswerable) | | | β | | β |
| | 1 | β | β | β | β | β |
| | More | | β | β | β | β |
| **Number of target variables** | 0 (β ASK verb) | | β | β | β | β |
| | 1 | β | β | β | β | β |
| | 2 | | | β | | β |
| **Dialogue context** | Self-sufficient | β | β | β | β | β |
| | Coreference | | | | β | β |
| | Ellipsis | | | | β | β |
| **Meaning** | Meaningful | β | β | β | β | β |
| | Non-sense | | | | | β |
### Data splits
Text verbalization is only available for a subset of the test set, referred to as *challenge set*. Other sample only contain dialogues in the form of follow-up sparql queries.
| | Train | Validation | Test | Challenge |
| --------------------- | ---------- | ---------- | ---------- | ------------ |
| Questions | 27727 | 3485 | 4179 | 332 |
| Dialogues | 1001 | 1264 | 1417 | 100 |
| NL question per query | 0 | 0 | 0 | 2 |
| Characters per query | 129 (Β± 43) | 131 (Β± 45) | 122 (Β± 45) | 113 (Β± 38) |
| Tokens per question | - | - | - | 8.4 (Β± 4.5) |
## Additional information
### Related datasets
This corpus is part of a set of 5 datasets released for SPARQL-to-Text generation, namely:
- Non conversational datasets
- [SimpleQuestions](https://huggingface.co/datasets/OrangeInnov/simplequestions-sparqltotext) (from https://github.com/askplatypus/wikidata-simplequestions)
- [ParaQA](https://huggingface.co/datasets/OrangeInnov/paraqa-sparqltotext) (from https://github.com/barshana-banerjee/ParaQA)
- [LC-QuAD 2.0](https://huggingface.co/datasets/OrangeInnov/lcquad_2.0-sparqltotext) (from http://lc-quad.sda.tech/)
- Conversational datasets
- [CSQA](https://huggingface.co/datasets/OrangeInnov/csqa-sparqltotext) (from https://amritasaha1812.github.io/CSQA/)
- [WebNLQ-QA](https://huggingface.co/datasets/OrangeInnov/webnlg-qa) (derived from https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/release_v3.0)
### Licencing information
* Content from original dataset: CC-BY-SA 4.0
* New content: CC BY-SA 4.0
### Citation information
#### This dataset
```bibtex
@inproceedings{lecorve2022sparql2text,
title={SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications},
author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.},
journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)},
year={2022}
}
```
#### The underlying corpus WEBNLG 3.0
```bibtex
@inproceedings{castro-ferreira-etal-2020-2020,
title = "The 2020 Bilingual, Bi-Directional {W}eb{NLG}+ Shared Task: Overview and Evaluation Results ({W}eb{NLG}+ 2020)",
author = "Castro Ferreira, Thiago and Gardent, Claire and Ilinykh, Nikolai and van der Lee, Chris and Mille, Simon and Moussallem, Diego and Shimorina, Anastasia",
booktitle = "Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)",
year = "2020",
pages = "55--76"
}
```
|