File size: 9,206 Bytes
6a6e378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import ast
import datetime
import json
import os
import sys
import time
from pathlib import Path
import numpy as np
import openai
import requests
import yaml
from loguru import logger as eval_logger
from openai import OpenAI
from tqdm import tqdm
import lmms_eval.tasks._task_utils.file_utils as file_utils
with open(Path(__file__).parent / "_default_template_yaml", "r") as f:
raw_data = f.readlines()
safe_data = []
for i, line in enumerate(raw_data):
if "!function" not in line:
safe_data.append(line)
config = yaml.safe_load("".join(safe_data))
NUM_SECONDS_TO_SLEEP = 5
GPT_EVAL_MODEL_NAME = config["metadata"]["gpt_eval_model_name"]
API_TYPE = os.getenv("API_TYPE", "openai")
if API_TYPE == "openai":
API_URL = os.getenv("OPENAI_API_URL", "https://api.openai.com/v1/chat/completions")
API_KEY = os.getenv("OPENAI_API_KEY", "INSERT_API_KEY_HERE")
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json",
}
def mint_doc_to_visual(doc):
HF_HOME = os.getenv("HF_HOME", "~/.cache/huggingface/")
base_cache_dir = os.path.expanduser(HF_HOME)
cache_name = config["dataset_kwargs"]["cache_dir"]
cache_dir = os.path.join(base_cache_dir, cache_name)
video_path = doc["mint_video_id"]
video_path = os.path.join(cache_dir, video_path)
if os.path.exists(video_path):
video_path = video_path
else:
sys.exit(f"video path:{video_path} does not exist, please check")
return [video_path]
# format the question
def mint_doc_to_text(doc, lmms_eval_specific_kwargs=None):
if lmms_eval_specific_kwargs is None:
lmms_eval_specific_kwargs = {}
pre_prompt = ""
post_prompt = ""
if "pre_prompt" in lmms_eval_specific_kwargs:
pre_prompt = lmms_eval_specific_kwargs["pre_prompt"]
if "post_prompt" in lmms_eval_specific_kwargs:
post_prompt = lmms_eval_specific_kwargs["post_prompt"]
pre_prompt = "You are a multilingual Vision-Language Model capable of understanding videos and answering questions in multiple languages. You should analyze the content of the given video and answer questions in the same language they are asked. The question is as follows:\n"
post_prompt = "\nAnswer the question in the same language as it is asked."
question = doc["question"]
return f"{pre_prompt}{question}{post_prompt}"
# format answer
def mint_doc_to_answer(doc):
return doc["answer"]
def get_gpt_eval(question, answer, pred, max_tokens: int, retries: int = 5):
global headers
messages = [
{
"role": "system",
"content": "You are an intelligent chatbot designed for evaluating the correctness of AI assistant predictions for question-answer pairs. "
"Your task is to compare the predicted answer with the ground-truth answer and determine if the predicted answer is correct or not. Here's how you can accomplish the task:"
"------"
"##INSTRUCTIONS: "
"- Focus on the correctness and accuracy of the predicted answer with the ground-truth.\n"
"- Consider predictions with less specific details as correct evaluation, unless such details are explicitly asked in the question.\n",
},
{
"role": "user",
"content": "Please evaluate the following video-based question-answer pair:\n\n"
f"Question: {question}\n"
f"Ground truth correct Answer: {answer}\n"
f"Predicted Answer: {pred}\n\n"
"Provide your evaluation as a correct/incorrect prediction along with the score where the score is an integer value between 0 (fully wrong) and 5 (fully correct). The middle score provides the percentage of correctness."
"Please generate the response in the form of a Python dictionary string with keys 'pred', 'score' and 'reason', where value of 'pred' is a string of 'correct' or 'incorrect', value of 'score' is in INTEGER, not STRING and value of 'reason' should provide the reason behind the decision."
"Only provide the Python dictionary string."
'For example, your response should look like this: {"pred": "correct", "score": 4.8, "reason": reason}.',
},
]
payload = {
"model": GPT_EVAL_MODEL_NAME,
"messages": messages,
"temperature": 0,
"max_tokens": max_tokens,
}
for attempt in range(retries):
try:
response = requests.post(API_URL, headers=headers, json=payload, timeout=60)
response.raise_for_status() # Raises HTTPError for bad responses
try:
response_data = response.json() # Attempt to parse JSON
except requests.exceptions.JSONDecodeError:
eval_logger.error(f"JSON decode error on attempt {attempt + 1}. Response text: {response.text}")
continue # Skip to next retry
content = response_data["choices"][0]["message"]["content"].strip()
if content != "":
return content, response_data["model"]
# Handle HTTP errors separately
except requests.exceptions.HTTPError as e:
eval_logger.error(f"HTTP error on attempt {attempt + 1}: {e}")
# Handle other requests-related errors
except requests.exceptions.RequestException as e:
eval_logger.error(f"Request exception on attempt {attempt + 1}: {e}")
except Exception as e:
eval_logger.error(f"Unexpected error on attempt {attempt + 1}: {e}")
# Handle other unexpected errors
if attempt < retries - 1:
time.sleep(NUM_SECONDS_TO_SLEEP)
else: # If this was the last attempt, log and return empty
eval_logger.error(f"All {retries} attempts failed. Last error message: {e}")
return "", ""
return "", ""
def parse_score(review):
try:
# Convert the string representation of a dictionary to an actual dictionary
# Escape single quotes inside the dictionary string to prevent parsing errors
review_dict = ast.literal_eval(review)
correctness = review_dict.get("pred", "incorrect")
score = review_dict.get("score", 0)
reason = review_dict.get("reason", "")
return correctness, int(score), reason
except SyntaxError as e:
eval_logger.error(f"Syntax error parsing the review string: {e}. Review content: {review}")
return "incorrect", int(0), ""
except ValueError as e:
eval_logger.error(f"Value error parsing the review string: {e}. Review content: {review}")
return "incorrect", int(0), ""
except Exception as e:
eval_logger.error(f"Unexpected error parsing the review string: {e}. Review content: {review}")
return "incorrect", int(0), ""
# Process result for evaluation in temporal task
def mint_process_results(doc, result):
"""
Args:
doc: a instance of the eval dataset
results: [pred]
Returns:
a dictionary
"""
try:
question = doc["question"]
answer = doc["answer"]
pred = result[0]
# Assume get_gpt_eval returns a review and the model name, and parse_score parses this review
# review, model_name = get_gpt_eval(question, answer, pred, 512)
# correctness, score, reason = parse_score(review)
model_name = "No GPT"
correctness = "incorrect"
score = 0
reason = "GPT not used"
except Exception as e:
eval_logger.error(f"Error for Question ID: {doc.get('question_id', 'Unknown')}: {e}")
review = "Failed to Get a Proper Review."
model_name = "Failed Request"
score = 0
correctness = "incorrect"
reason = ""
return {
"gpt_eval_score": {"mint_video_id": doc["mint_video_id"], "question": doc["question"], "answer": doc["answer"], "pred": pred, "video_sub_category": doc["video_sub_category"], "correctness": correctness, "score": score, "reason": reason},
"gpt_eval_accuracy": {"mint_video_id": doc["mint_video_id"], "question": doc["question"], "answer": doc["answer"], "pred": pred, "video_sub_category": doc["video_sub_category"], "correctness": correctness, "score": score, "reason": reason},
}
# Factory into different aggregate
def mint_aggregate_score(results, args):
total_score = 0
# Iterate over the results to sum scores
for result_dict in results:
total_score += result_dict["score"]
# Calculate average score
average_score = total_score / len(results) if results else 0
eval_logger.info(f"Average Score: {average_score}")
return average_score
def mint_aggregate_accuracy(results, args):
yes_count = 0
no_count = 0
# Iterate over the results to count correctness
for result_dict in results:
if result_dict["correctness"] == "correct":
yes_count += 1
else:
no_count += 1
# Calculate accuracy and average score
accuracy = yes_count / (yes_count + no_count) if (yes_count + no_count) > 0 else 0
eval_logger.info(f"Accuracy: {accuracy}")
return accuracy * 100
|