|
import numpy as np |
|
from typing import List, Dict, Optional |
|
from sklearn.metrics import roc_auc_score, average_precision_score |
|
|
|
def gene_precision(pred: List[str], ref: List[str]) -> float: |
|
if len(pred) == 0: |
|
return 1.0 if len(ref) == 0 else 0.0 |
|
return sum([p in ref for p in pred]) / len(pred) |
|
|
|
def gene_recall(pred: List[str], ref: List[str]) -> float: |
|
if len(ref) == 0: |
|
return 1.0 if len(pred) == 0 else 0.0 |
|
return sum([p in pred for p in ref]) / len(ref) |
|
|
|
def gene_f1(pred: List[str], ref: List[str]) -> float: |
|
prec = gene_precision(pred, ref) |
|
rec = gene_recall(pred, ref) |
|
if prec + rec == 0: |
|
return 0.0 |
|
return 2.0 * (prec * rec) / (prec + rec) |
|
|
|
def gsea_enrichment_score(ranked_genes: List[str], ref_genes: List[str]) -> float: |
|
""" |
|
Compute a simple GSEA-like Enrichment Score (ES) using an unweighted running sum. |
|
""" |
|
ref_set = set(ref_genes) |
|
N = len(ranked_genes) |
|
Nh = len(ref_set) |
|
Nm = N - Nh |
|
|
|
if Nh == 0 or Nh == N: |
|
return float('nan') |
|
|
|
hit_inc = 1.0 / float(Nh) |
|
miss_inc = 1.0 / float(Nm) |
|
running_sum = 0.0 |
|
max_enrichment = -999999.0 |
|
|
|
for g in ranked_genes: |
|
if g in ref_set: |
|
running_sum += hit_inc |
|
else: |
|
running_sum -= miss_inc |
|
if running_sum > max_enrichment: |
|
max_enrichment = running_sum |
|
|
|
return max_enrichment |
|
|
|
def compute_auroc_auprc_full(pred_genes: List[str], |
|
ref_genes: List[str], |
|
all_genes: List[str]) -> (float, float): |
|
""" |
|
Compute AUROC/AUPRC by assigning a strictly descending score |
|
to each predicted gene (based on its index in pred_genes) and |
|
zero to all unselected genes. |
|
""" |
|
pred_set = set(pred_genes) |
|
ref_set = set(ref_genes) |
|
|
|
top_len = len(pred_genes) |
|
|
|
|
|
gene_scores = {} |
|
for i, g in enumerate(pred_genes): |
|
|
|
|
|
gene_scores[g] = float(top_len - i) |
|
|
|
|
|
for g in all_genes: |
|
if g not in gene_scores: |
|
gene_scores[g] = 0.0 |
|
|
|
|
|
y_true = np.array([1 if g in ref_set else 0 for g in all_genes], dtype=int) |
|
y_score = np.array([gene_scores[g] for g in all_genes], dtype=float) |
|
|
|
|
|
if np.all(y_true == 0) or np.all(y_true == 1): |
|
return float('nan'), float('nan') |
|
|
|
auroc = roc_auc_score(y_true, y_score) |
|
auprc = average_precision_score(y_true, y_score) |
|
return auroc, auprc |
|
|
|
def compute_auroc_auprc_approx(pred_genes: List[str], ref_genes: List[str], |
|
n_genes: int = 20000): |
|
""" |
|
Approximate AUROC/AUPRC if we only know which genes are predicted vs. not, |
|
and assume all unselected genes share the same (zero) score |
|
""" |
|
pred_set = set(pred_genes) |
|
ref_set = set(ref_genes) |
|
|
|
top_len = len(pred_genes) |
|
if top_len > n_genes: |
|
print(f"Warning: predicted {top_len} genes, but only {n_genes} possible. Truncating.") |
|
pred_genes = pred_genes[:n_genes] |
|
pred_set = set(pred_genes) |
|
top_len = n_genes |
|
|
|
scores = np.zeros(n_genes, dtype=float) |
|
labels = np.zeros(n_genes, dtype=int) |
|
|
|
|
|
for i, g in enumerate(pred_genes): |
|
scores[i] = float(top_len - i) |
|
labels[i] = 1 if g in ref_set else 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(ref_set) == 0 or len(ref_set) == n_genes: |
|
return float('nan'), float('nan') |
|
|
|
|
|
if np.all(labels == 0) or np.all(labels == 1): |
|
return float('nan'), float('nan') |
|
|
|
auroc = roc_auc_score(labels, scores) |
|
auprc = average_precision_score(labels, scores) |
|
return auroc, auprc |
|
|
|
def evaluate_gene_selection(pred: List[str], |
|
ref: List[str], |
|
all_genes: Optional[List[str]] = None, |
|
n_genes: int = 20000, |
|
do_gsea: bool = True) -> Dict[str, float]: |
|
""" |
|
Evaluate the performance of predicted gene selection against a reference set, |
|
with: |
|
- Precision, Recall, F1 |
|
- AUROC, AUPRC (via a ranking-based approach) |
|
- Simple GSEA-ES (if do_gsea=True) |
|
""" |
|
|
|
|
|
precision_val = gene_precision(pred, ref) |
|
recall_val = gene_recall(pred, ref) |
|
f1_val = gene_f1(pred, ref) |
|
|
|
|
|
if all_genes is not None: |
|
auroc_val, auprc_val = compute_auroc_auprc_full(pred, ref, all_genes) |
|
else: |
|
|
|
|
|
auroc_val, auprc_val = compute_auroc_auprc_approx(pred, ref, n_genes) |
|
|
|
|
|
if do_gsea: |
|
|
|
es_val = float('nan') |
|
if all_genes is not None and len(all_genes) > 0: |
|
|
|
|
|
|
|
|
|
pred_set = set(pred) |
|
top_len = len(pred) |
|
gene_scores = {} |
|
for i, g in enumerate(pred): |
|
gene_scores[g] = float(top_len - i) |
|
for g in all_genes: |
|
if g not in gene_scores: |
|
gene_scores[g] = 0.0 |
|
|
|
|
|
ranked_list = sorted(all_genes, key=lambda x: gene_scores[x], reverse=True) |
|
|
|
es_val = gsea_enrichment_score(ranked_list, ref) |
|
else: |
|
|
|
tail_count = n_genes - len(pred) |
|
if tail_count >= 0: |
|
dummy_genes = [f"UNK_{i}" for i in range(tail_count)] |
|
ranked_list = list(pred) + dummy_genes |
|
es_val = gsea_enrichment_score(ranked_list, ref) |
|
else: |
|
es_val = float('nan') |
|
else: |
|
es_val = float('nan') |
|
|
|
|
|
|
|
return { |
|
'precision': precision_val * 100.0, |
|
'recall': recall_val * 100.0, |
|
'f1': f1_val * 100.0, |
|
'auroc': auroc_val, |
|
|
|
'gsea_es': es_val |
|
} |
|
|