|
import argparse |
|
import os |
|
import re |
|
import traceback |
|
from abc import ABC, abstractmethod |
|
from dataclasses import dataclass |
|
from typing import Optional, Any, Dict, List |
|
|
|
import backoff |
|
import google.generativeai as genai |
|
from anthropic import AsyncAnthropic |
|
from dotenv import load_dotenv |
|
from google.api_core import retry as g_retry |
|
from google.generativeai.types import RequestOptions, HarmCategory, HarmBlockThreshold |
|
from ollama import AsyncClient as AsyncOllama |
|
from openai import AsyncOpenAI, RequestOptions |
|
|
|
from .utils import check_slow_inference, check_recent_openai_model |
|
|
|
DEFAULT_MAX_RETRIES = 3 |
|
DEFAULT_TIMEOUT_PER_RETRY = 30 |
|
DEFAULT_TIMEOUT_PER_MESSAGE = DEFAULT_MAX_RETRIES * DEFAULT_TIMEOUT_PER_RETRY |
|
|
|
"""Model configurations and pricing. |
|
|
|
Important: |
|
- The cost printed in the log is only for reference. Please track actual costs in your LLM provider platform. |
|
- For inference models (e.g., 'o1'), cost estimation can be much lower than actual cost since hidden thinking tokens |
|
are charged at output token rates. |
|
- Pricing information is accurate as of 2025-02-15 but subject to change. Please update monthly. |
|
""" |
|
|
|
MODEL_INFO = { |
|
'openai': { |
|
'o1-2024-12-17': {'input_price': 15.0, 'output_price': 60.0}, |
|
'o3-mini-2025-01-31': {'input_price': 1.1, 'output_price': 4.4}, |
|
'o1-mini-2024-09-12': {'input_price': 1.1, 'output_price': 4.4}, |
|
'gpt-4o-2024-11-20': {'input_price': 2.5, 'output_price': 10.0}, |
|
'gpt-4o-mini-2024-07-18': {'input_price': 0.15, 'output_price': 0.60} |
|
}, |
|
'anthropic': { |
|
'claude-3-7-sonnet-20250219': {'input_price': 3.0, 'output_price': 15.0}, |
|
'claude-3-5-sonnet-20241022': {'input_price': 3.0, 'output_price': 15.0}, |
|
'claude-3-5-haiku-20241022': {'input_price': 0.8, 'output_price': 4.0} |
|
}, |
|
'google': { |
|
'gemini-2.0-flash-001': {'input_price': 0.1, 'output_price': 0.4}, |
|
'gemini-1.5-pro-002': {'input_price': 1.25, 'output_price': 5.0}, |
|
'gemini-1.5-flash-002': {'input_price': 0.075, 'output_price': 0.30} |
|
}, |
|
'ollama': { |
|
'deepseek-r1:671b': {'input_price': 0.0, 'output_price': 0.0, 'size': '671B'}, |
|
'deepseek-r1:70b': {'input_price': 0.0, 'output_price': 0.0, 'size': '70B'}, |
|
'deepseek-v3': {'input_price': 0.0, 'output_price': 0.0, 'size': '671B'}, |
|
'llama3.3': {'input_price': 0.0, 'output_price': 0.0, 'size': '70B'}, |
|
'llama3.1': {'input_price': 0.0, 'output_price': 0.0, 'size': '8B'}, |
|
'llama3.2': {'input_price': 0.0, 'output_price': 0.0, 'size': '3B'}, |
|
'llama3.2:1b': {'input_price': 0.0, 'output_price': 0.0, 'size': '1B'} |
|
}, |
|
'novita': { |
|
'deepseek-r1:671b': { |
|
'input_price': 4.00, |
|
'output_price': 4.00, |
|
'size': '671B', |
|
'api_name': 'deepseek/deepseek-r1' |
|
}, |
|
'deepseek-r1:70b': { |
|
'input_price': 0.80, |
|
'output_price': 0.80, |
|
'size': '70B', |
|
'api_name': 'deepseek/deepseek-r1-distill-llama-70b' |
|
}, |
|
'deepseek-v3': { |
|
'input_price': 0.89, |
|
'output_price': 0.89, |
|
'size': '671B', |
|
'api_name': 'deepseek/deepseek_v3' |
|
}, |
|
'llama3.3': { |
|
'input_price': 0.39, |
|
'output_price': 0.39, |
|
'size': '70B', |
|
'api_name': 'meta-llama/llama-3.3-70b-instruct' |
|
}, |
|
'llama3.1': { |
|
'input_price': 0.05, |
|
'output_price': 0.05, |
|
'size': '8B', |
|
'api_name': 'meta-llama/llama-3.1-8b-instruct' |
|
}, |
|
'llama3.2': { |
|
'input_price': 0.03, |
|
'output_price': 0.05, |
|
'size': '3B', |
|
'api_name': 'meta-llama/llama-3.2-3b-instruct' |
|
}, |
|
'llama3.2:1b': { |
|
'input_price': 0.02, |
|
'output_price': 0.02, |
|
'size': '1B', |
|
'api_name': 'meta-llama/llama-3.2-1b-instruct' |
|
}, |
|
}, |
|
|
|
'deepseek': { |
|
'deepseek-v3': { |
|
'input_price': 0.07, |
|
'output_price': 0.27, |
|
'api_name': 'deepseek-chat' |
|
}, |
|
'deepseek-r1:671b': { |
|
'input_price': 0.14, |
|
'output_price': 0.55, |
|
'api_name': 'deepseek-reasoner' |
|
} |
|
} |
|
} |
|
|
|
|
|
def validate_model(provider: str, model: str, use_api: bool = False) -> str: |
|
"""Validate if the model name is valid for the given provider, or detect provider if 'none'. |
|
For Llama models, the provider will be determined based on use_api flag. |
|
|
|
Args: |
|
provider: Provider name, or 'none' for auto-detection |
|
model: Model name |
|
use_api: If True, use API service (Novita) for Llama models instead of local deployment |
|
|
|
Returns: |
|
str: Validated provider name |
|
""" |
|
if provider.lower() == 'none': |
|
is_open_source = any(model in MODEL_INFO[p] for p in ['ollama', 'novita']) |
|
if is_open_source: |
|
|
|
return 'novita' if use_api else 'ollama' |
|
else: |
|
|
|
for p, models in MODEL_INFO.items(): |
|
if model in models: |
|
return p |
|
supported_models = "\n".join( |
|
f"- {p}: {', '.join(models.keys())}" |
|
for p, models in MODEL_INFO.items() |
|
) |
|
raise ValueError(f"Could not detect a provider for model: {model}.\nSupported models:\n{supported_models}") |
|
|
|
|
|
if provider not in MODEL_INFO: |
|
raise ValueError(f"Invalid provider: {provider}. Must be one of {list(MODEL_INFO.keys())}") |
|
if model not in MODEL_INFO[provider]: |
|
raise ValueError( |
|
f"Invalid model name for provider {provider}.\n" |
|
f"Valid models are: {list(MODEL_INFO[provider].keys())}" |
|
) |
|
return provider |
|
|
|
|
|
def calculate_cost(provider: str, model: str, input_tokens: int, output_tokens: int) -> float: |
|
"""Calculate the cost of an API call in dollars.""" |
|
try: |
|
config = MODEL_INFO[provider][model] |
|
input_cost = (input_tokens / 1_000_000) * config['input_price'] |
|
output_cost = (output_tokens / 1_000_000) * config['output_price'] |
|
return input_cost + output_cost |
|
except (KeyError, ValueError): |
|
return -1.0 |
|
|
|
|
|
@dataclass |
|
class ModelConfig: |
|
model_name: str |
|
provider: str |
|
api_key: Optional[str] = None |
|
timeout_per_retry: Optional[float] = None |
|
timeout_per_message: Optional[float] = None |
|
max_retries: Optional[int] = None |
|
organization: Optional[str] = None |
|
extra_client_params: Optional[Dict[str, Any]] = None |
|
extra_message_params: Optional[Dict[str, Any]] = None |
|
|
|
@classmethod |
|
def create(cls, provider: str, model: str, api_index: Optional[str] = None) -> 'ModelConfig': |
|
"""Factory method to create and validate a ModelConfig instance.""" |
|
load_dotenv() |
|
|
|
|
|
key_suffix = f"_{api_index}" if api_index is not None else "" |
|
|
|
|
|
scaler = 1.0 |
|
if check_slow_inference(model): |
|
scaler = 5.0 if ('deepseek' in model.lower() and '671b' in model.lower()) else 2.0 |
|
elif ('deepseek' in model.lower() and 'v3' in model.lower()): |
|
scaler = 2.0 |
|
|
|
|
|
provider_configs = { |
|
'openai': { |
|
'max_retries': 3, |
|
'timeout_per_retry': 30.0 * scaler, |
|
'timeout_per_message': 90.0 * scaler, |
|
'organization': os.getenv(f'OPENAI_ORGANIZATION{key_suffix}'), |
|
'api_key': os.getenv(f'OPENAI_API_KEY{key_suffix}') |
|
}, |
|
'anthropic': { |
|
'max_retries': 3, |
|
'timeout_per_retry': 30.0 * scaler, |
|
'timeout_per_message': 90.0 * scaler, |
|
'api_key': os.getenv(f'ANTHROPIC_API_KEY{key_suffix}') |
|
}, |
|
'google': { |
|
'max_retries': 3, |
|
'timeout_per_retry': 30.0 * scaler, |
|
'timeout_per_message': 90.0 * scaler, |
|
'api_key': os.getenv(f'GOOGLE_API_KEY{key_suffix}') |
|
}, |
|
'ollama': { |
|
'max_retries': 3, |
|
'timeout_per_retry': 30.0 * scaler, |
|
'timeout_per_message': 90.0 * scaler, |
|
'extra_message_params': { |
|
'num_ctx': 20000, |
|
} |
|
}, |
|
'novita': { |
|
'max_retries': 3, |
|
'timeout_per_retry': 30.0 * scaler, |
|
'timeout_per_message': 90.0 * scaler, |
|
'api_key': os.getenv(f'NOVITA_API_KEY{key_suffix}') |
|
}, |
|
'deepseek': { |
|
'max_retries': 3, |
|
'timeout_per_retry': 30.0 * scaler, |
|
'timeout_per_message': 90.0 * scaler, |
|
'api_key': os.getenv(f'DEEPSEEK_API_KEY{key_suffix}') |
|
} |
|
} |
|
|
|
if provider not in provider_configs: |
|
raise ValueError(f"Configuration not found for provider: {provider}") |
|
|
|
config = provider_configs[provider] |
|
|
|
|
|
if provider == 'openai': |
|
if not config['api_key'] or not config['organization']: |
|
raise ValueError( |
|
f"Missing OpenAI configuration for index {api_index}. " |
|
f"Please ensure both OPENAI_API_KEY{key_suffix} and OPENAI_ORGANIZATION{key_suffix} " |
|
"are set in your .env file" |
|
) |
|
elif provider != 'ollama' and not config['api_key']: |
|
raise ValueError( |
|
f"Missing API key for {provider} with API index {api_index}. " |
|
f"Please ensure {provider.upper()}_API_KEY{key_suffix} is set in your .env file" |
|
) |
|
|
|
return cls( |
|
model_name=model, |
|
provider=provider, |
|
**config |
|
) |
|
|
|
|
|
def get_llm_client(args: argparse.Namespace, logger: Optional['Logger'] = None) -> 'LLMClient': |
|
"""Get LLM client based on provider and model.""" |
|
|
|
provider = validate_model(args.provider, args.model, getattr(args, 'use_api', False)) |
|
|
|
|
|
config = ModelConfig.create(provider, args.model, args.api) |
|
|
|
|
|
clients = { |
|
'openai': OpenAIClient, |
|
'anthropic': AnthropicClient, |
|
'google': GoogleClient, |
|
'ollama': OllamaClient, |
|
'novita': NovitaClient, |
|
'deepseek': DeepSeekClient |
|
} |
|
|
|
return clients[provider](config, logger) |
|
|
|
|
|
class LLMClient(ABC): |
|
def __init__(self, config: ModelConfig, logger: Optional['Logger'] = None): |
|
self.config = config |
|
self.timeout_per_retry = config.timeout_per_retry or DEFAULT_TIMEOUT_PER_RETRY |
|
self.timeout_per_message = config.timeout_per_message or DEFAULT_TIMEOUT_PER_MESSAGE |
|
self.max_retries = config.max_retries or DEFAULT_MAX_RETRIES |
|
self._initialize_client() |
|
self.logger = logger |
|
self.model_name = config.model_name |
|
|
|
@abstractmethod |
|
def _initialize_client(self): |
|
pass |
|
|
|
@abstractmethod |
|
async def generate_completion(self, messages: List[Dict[str, str]]) -> Any: |
|
pass |
|
|
|
def _remove_thinking_process(self, content: str) -> str: |
|
"""Remove thinking process from the response content, to make experiments with DeepSeek-R1 consistent with |
|
others.""" |
|
cleaned_content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL) |
|
return cleaned_content.strip() |
|
|
|
def _format_response(self, content: str, input_tokens: int, output_tokens: int, raw_response: Any) -> Dict[ |
|
str, Any]: |
|
"""Format response with standardized structure and calculate cost.""" |
|
cleaned_content = self._remove_thinking_process(content) |
|
cost = calculate_cost(self.config.provider, self.model_name, input_tokens, output_tokens) |
|
return { |
|
"content": cleaned_content, |
|
"usage": { |
|
"input_tokens": input_tokens, |
|
"output_tokens": output_tokens, |
|
"cost": cost |
|
}, |
|
"raw_response": raw_response |
|
} |
|
|
|
def handle_exception(self, e: Exception) -> Dict[str, Any]: |
|
if isinstance(e, (ValueError, KeyError)): |
|
raise |
|
provider_name = self.__class__.__name__.replace('Client', '') |
|
error_msg = f"{type(e).__name__} in {provider_name} API call: {str(e)}\n{traceback.format_exc()}" |
|
|
|
if hasattr(self, 'logger') and self.logger: |
|
self.logger.error(error_msg) |
|
else: |
|
print(error_msg) |
|
|
|
return { |
|
"content": "", |
|
"usage": {}, |
|
"raw_response": None |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
class OpenAIClient(LLMClient): |
|
def _initialize_client(self): |
|
self.client = AsyncOpenAI( |
|
api_key=self.config.api_key, |
|
organization=self.config.organization, |
|
timeout=self.timeout_per_retry, |
|
max_retries=self.max_retries, |
|
**(self.config.extra_client_params or {}) |
|
) |
|
|
|
async def generate_completion(self, messages: List[Dict[str, str]]) -> Dict[str, Any]: |
|
try: |
|
|
|
if check_recent_openai_model(self.model_name) and messages[0]["role"] == "system": |
|
if 'o1-mini' in self.model_name.lower(): |
|
messages[0]["role"] = "assistant" |
|
else: |
|
messages[0]["role"] = "developer" |
|
response = await self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=messages, |
|
**(self.config.extra_message_params or {}) |
|
) |
|
return self._format_response( |
|
content=response.choices[0].message.content, |
|
input_tokens=response.usage.prompt_tokens, |
|
output_tokens=response.usage.completion_tokens, |
|
raw_response=response |
|
) |
|
except Exception as e: |
|
return self.handle_exception(e) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class AnthropicClient(LLMClient): |
|
def _initialize_client(self): |
|
self.client = AsyncAnthropic( |
|
api_key=self.config.api_key, |
|
timeout=self.timeout_per_retry, |
|
max_retries=self.max_retries, |
|
**(self.config.extra_client_params or {}) |
|
) |
|
|
|
async def generate_completion(self, messages: List[Dict[str, str]]) -> Dict[str, Any]: |
|
try: |
|
|
|
|
|
|
|
response = await self.client.messages.create( |
|
model=self.model_name, |
|
max_tokens=2048, |
|
system=messages[0]["content"], |
|
messages=messages[1:], |
|
**(self.config.extra_message_params or {}) |
|
) |
|
return self._format_response( |
|
content=response.content[0].text, |
|
input_tokens=response.usage.input_tokens, |
|
output_tokens=response.usage.output_tokens, |
|
raw_response=response |
|
) |
|
except Exception as e: |
|
return self.handle_exception(e) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class GoogleClient(LLMClient): |
|
def _initialize_client(self): |
|
genai.configure(api_key=self.config.api_key) |
|
|
|
self.model = None |
|
|
|
self.safety_settings = { |
|
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE, |
|
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE, |
|
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE, |
|
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE, |
|
} |
|
|
|
async def generate_completion(self, messages: List[Dict[str, str]]) -> Dict[str, Any]: |
|
try: |
|
system_msg = messages[0]["content"] |
|
user_msg = messages[1]["content"] |
|
|
|
|
|
if self.model is None: |
|
self.model = genai.GenerativeModel( |
|
model_name=self.model_name, |
|
system_instruction=system_msg, |
|
**(self.config.extra_client_params or {}) |
|
) |
|
|
|
request_options = RequestOptions( |
|
retry=g_retry.AsyncRetry( |
|
initial=8.0, |
|
multiplier=2.0, |
|
maximum=self.timeout_per_retry, |
|
timeout=self.timeout_per_message, |
|
), |
|
timeout=self.timeout_per_retry |
|
) |
|
|
|
response = await self.model.generate_content_async( |
|
user_msg, |
|
request_options=request_options, |
|
safety_settings=self.safety_settings, |
|
**(self.config.extra_message_params or {}) |
|
) |
|
return self._format_response( |
|
content=response.text, |
|
input_tokens=response.usage_metadata.prompt_token_count, |
|
output_tokens=response.usage_metadata.candidates_token_count, |
|
raw_response=response |
|
) |
|
except Exception as e: |
|
return self.handle_exception(e) |
|
|
|
|
|
|
|
|
|
|
|
def with_backoff(func): |
|
async def wrapper(self, *args, **kwargs): |
|
@backoff.on_exception( |
|
backoff.expo, |
|
Exception, |
|
max_tries=self.max_retries, |
|
max_time=self.timeout_per_message |
|
) |
|
async def wrapped(*_args, **_kwargs): |
|
return await func(self, *_args, **_kwargs) |
|
|
|
return await wrapped(*args, **kwargs) |
|
|
|
return wrapper |
|
|
|
|
|
class OllamaClient(LLMClient): |
|
def _initialize_client(self): |
|
extra_message_params = self.config.extra_message_params or {} |
|
self.chat_params = { |
|
"num_ctx": extra_message_params.pop("num_ctx", 20000), |
|
} |
|
self.client = AsyncOllama(**(self.config.extra_client_params or {})) |
|
|
|
@with_backoff |
|
async def generate_completion(self, messages: List[Dict[str, str]]) -> Dict[str, Any]: |
|
""" |
|
Set system prompt according to this: |
|
https://www.reddit.com/r/ollama/comments/1czw7mj/how_to_set_system_prompt_in_ollama/ |
|
""" |
|
try: |
|
|
|
|
|
response = await self.client.chat( |
|
model=self.model_name, |
|
messages=messages, |
|
options=self.chat_params, |
|
**(self.config.extra_message_params or {}) |
|
) |
|
return self._format_response( |
|
content=response['message']['content'], |
|
input_tokens=response["prompt_eval_count"], |
|
output_tokens=response["eval_count"], |
|
raw_response=response |
|
) |
|
except Exception as e: |
|
return self.handle_exception(e) |
|
|
|
|
|
|
|
|
|
|
|
class NovitaClient(LLMClient): |
|
def _initialize_client(self): |
|
"""Initialize the Novita client with AsyncOpenAI.""" |
|
self.client = AsyncOpenAI( |
|
api_key=self.config.api_key, |
|
base_url="https://api.novita.ai/v3/openai", |
|
timeout=self.timeout_per_retry, |
|
max_retries=self.max_retries, |
|
**(self.config.extra_client_params or {}) |
|
) |
|
|
|
async def generate_completion(self, messages: List[Dict[str, str]]) -> Dict[str, Any]: |
|
"""Generate completion using Novita's API.""" |
|
try: |
|
model_name = MODEL_INFO['novita'][self.model_name]['api_name'] |
|
response = await self.client.chat.completions.create( |
|
model=model_name, |
|
messages=messages, |
|
**self.config.extra_message_params or {} |
|
) |
|
return self._format_response( |
|
content=response.choices[0].message.content, |
|
input_tokens=response.usage.prompt_tokens, |
|
output_tokens=response.usage.completion_tokens, |
|
raw_response=response |
|
) |
|
except Exception as e: |
|
return self.handle_exception(e) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class DeepSeekClient(LLMClient): |
|
def _initialize_client(self): |
|
"""Initialize the DeepSeek client with AsyncOpenAI.""" |
|
self.client = AsyncOpenAI( |
|
api_key=self.config.api_key, |
|
base_url='https://api.deepseek.com', |
|
timeout=self.timeout_per_retry, |
|
max_retries=self.max_retries, |
|
**(self.config.extra_client_params or {}) |
|
) |
|
|
|
async def generate_completion(self, messages: List[Dict[str, str]]) -> Dict[str, Any]: |
|
"""Generate completion using DeepSeek's API.""" |
|
try: |
|
model_name = MODEL_INFO['deepseek'][self.model_name]['api_name'] |
|
response = await self.client.chat.completions.create( |
|
model=model_name, |
|
messages=messages, |
|
**self.config.extra_message_params or {} |
|
) |
|
|
|
return self._format_response( |
|
content=response.choices[0].message.content, |
|
input_tokens=response.usage.prompt_tokens, |
|
output_tokens=response.usage.completion_tokens, |
|
raw_response=response |
|
) |
|
except Exception as e: |
|
return self.handle_exception(e) |
|
|