File size: 3,733 Bytes
17b4b33 53eba84 17b4b33 c30786d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
license: cc0-1.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
dataset_info:
features:
- name: experiment_name
dtype: string
- name: evidence_index
dtype: int64
- name: scan_number
dtype: int64
- name: sequence
dtype: string
- name: modified_sequence
dtype: string
- name: precursor_mz
dtype: float64
- name: precursor_recalibrated_mz
dtype: float64
- name: precursor_mass
dtype: float64
- name: precursor_charge
dtype: int64
- name: retention_time
dtype: float64
- name: mz_array
sequence: float32
- name: intensity_array
sequence: float32
splits:
- name: train
num_bytes: 3370985593
num_examples: 2132847
- name: validation
num_bytes: 413243959
num_examples: 257187
- name: test
num_bytes: 421581021
num_examples: 265369
download_size: 3944832530
dataset_size: 4205810573
---
# Dataset Card for High-Confidence ProteomeTools
Dataset used to train, validate and test InstaNovo and InstaNovo+.
## Dataset Description
- **Repository:** [InstaNovo](https://github.com/instadeepai/InstaNovo)
- **Paper:** [De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments](https://www.biorxiv.org/content/10.1101/2023.08.30.555055v1)
### Dataset Summary
This dataset consists of the highest-confidence peptide-spectral matches from three parts of the [ProteomeTools](https://www.proteometools.org/) datasets. The original datasets may be found in the PRIDE repository with identifiers:
- `PXD004732` (Part I)
- `PXD010595` (Part II)
- `PXD021013` (Part III)
The dataset has been split on unique peptides with the following ratio:
- 80% train
- 10% validation
- 10% test
## Dataset Structure
The dataset is tabular, where each row corresponds to a labelled MS2 spectra.
- `sequence (string)` \
The target peptide sequence excluding post-translational modifications
- `modified_sequence (string)` \
The target peptide sequence including post-translational modifications
- `precursor_mz (float64)` \
The mass-to-charge of the precursor (from MS1)
- `charge (int64)` \
The charge of the precursor (from MS1)
- `mz_array (list[float64])` \
The mass-to-charge values of the MS2 spectrum
- `mz_array (list[float32])` \
The intensity values of the MS2 spectrum
MaxQuant additional columns:
- `experiment_name (string)`
- `evidence_index (in64)`
- `scan_number (in64)`
- `precursor_recalibrated_mz (float64)`
## Citation Information
If you use this dataset, please cite the original authors.
The original [ProteomeTools](https://www.proteometools.org/) data is available on [PRIDE](https://www.ebi.ac.uk/pride/) with identifiers `PXD004732` (Part I), `PXD010595` (Part II), and `PXD021013` (Part III).
Please also cite InstaNovo:
```bibtex
@article{eloff_kalogeropoulos_2023_instanovo,
title = {De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments},
author = {Kevin Eloff and Konstantinos Kalogeropoulos and Oliver Morell and Amandla Mabona and Jakob Berg Jespersen and Wesley Williams and Sam van Beljouw and Marcin Skwark and Andreas Hougaard Laustsen and Stan J. J. Brouns and Anne Ljungars and Erwin Marten Schoof and Jeroen Van Goey and Ulrich auf dem Keller and Karim Beguir and Nicolas Lopez Carranza and Timothy Patrick Jenkins},
year = {2023},
doi = {10.1101/2023.08.30.555055},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/10.1101/2023.08.30.555055v1},
journal = {bioRxiv}
}
```
|