Datasets:
File size: 6,881 Bytes
50fef92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import tensorflow as tf
from tensorflow.keras import layers
import pandas as pd
import numpy as np
from typing import Tuple, List
import logging
from datetime import datetime
from pathlib import Path
import json
from sklearn.preprocessing import MinMaxScaler
from ta.trend import SMAIndicator, EMAIndicator, MACD
from ta.momentum import RSIIndicator
from ta.volatility import BollingerBands
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class DataPreprocessor:
"""Handles data loading and preprocessing"""
def __init__(self, config_path: str = 'training_config/hyperparameters.json'):
with open(config_path) as f:
self.config = json.load(f)
self.scalers = {}
def load_data(self, data_path: str) -> pd.DataFrame:
"""Load data from CSV and add technical indicators"""
df = pd.read_csv(data_path)
df['timestamp'] = pd.to_datetime(df['timestamp'])
df = df.sort_values('timestamp')
# Add technical indicators
df = self.add_technical_indicators(df)
return df
def add_technical_indicators(self, df: pd.DataFrame) -> pd.DataFrame:
"""Add technical analysis indicators"""
# SMA
df['sma_20'] = SMAIndicator(close=df['price'], window=20).sma_indicator()
df['sma_50'] = SMAIndicator(close=df['price'], window=50).sma_indicator()
# EMA
df['ema_20'] = EMAIndicator(close=df['price'], window=20).ema_indicator()
# MACD
macd = MACD(close=df['price'])
df['macd'] = macd.macd()
df['macd_signal'] = macd.macd_signal()
# RSI
df['rsi'] = RSIIndicator(close=df['price']).rsi()
# Bollinger Bands
bb = BollingerBands(close=df['price'])
df['bb_high'] = bb.bollinger_hband()
df['bb_low'] = bb.bollinger_lband()
return df
def prepare_sequences(self, df: pd.DataFrame) -> Tuple[np.ndarray, np.ndarray]:
"""Create sequences for training"""
sequence_length = self.config['data']['sequence_length']
# Scale features
for column in df.select_dtypes(include=[np.number]).columns:
if column not in self.scalers:
self.scalers[column] = MinMaxScaler()
df[column] = self.scalers[column].fit_transform(df[[column]])
# Create sequences
sequences = []
targets = []
for i in range(len(df) - sequence_length):
sequence = df.iloc[i:i + sequence_length]
target = df.iloc[i + sequence_length]['price']
sequences.append(sequence)
targets.append(target)
return np.array(sequences), np.array(targets)
class TransformerBlock(layers.Layer):
"""Transformer block with multi-head attention"""
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
super().__init__()
self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
self.ffn = tf.keras.Sequential([
layers.Dense(ff_dim, activation="relu"),
layers.Dense(embed_dim),
])
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
def call(self, inputs, training):
attn_output = self.att(inputs, inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(out1 + ffn_output)
class CryptoTransformer(tf.keras.Model):
"""Main transformer model for cryptocurrency prediction"""
def __init__(self, config_path: str = 'training_config/hyperparameters.json'):
super().__init__()
with open(config_path) as f:
self.config = json.load(f)
# Model parameters
self.num_layers = self.config['model']['n_layers']
self.d_model = self.config['model']['d_model']
self.num_heads = self.config['model']['n_heads']
self.ff_dim = self.config['model']['d_ff']
self.dropout = self.config['model']['dropout']
# Layers
self.transformer_blocks = [
TransformerBlock(self.d_model, self.num_heads, self.ff_dim, self.dropout)
for _ in range(self.num_layers)
]
self.dropout = layers.Dropout(self.dropout)
self.dense = layers.Dense(1) # Final prediction layer
def call(self, inputs):
x = inputs
for transformer_block in self.transformer_blocks:
x = transformer_block(x)
x = layers.GlobalAveragePooling1D()(x)
x = self.dropout(x)
return self.dense(x)
def train_model():
"""Main training function"""
logger.info("Starting model training")
# Initialize preprocessor and load data
preprocessor = DataPreprocessor()
df = preprocessor.load_data('data/training/kraken_trades.csv')
# Prepare sequences
X, y = preprocessor.prepare_sequences(df)
# Split data
train_size = int(0.8 * len(X))
X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]
# Initialize model
model = CryptoTransformer()
# Compile model
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
model.compile(
optimizer=optimizer,
loss='mse',
metrics=['mae']
)
# Train model
history = model.fit(
X_train, y_train,
epochs=100,
batch_size=32,
validation_data=(X_test, y_test),
callbacks=[
tf.keras.callbacks.EarlyStopping(
monitor='val_loss',
patience=10,
restore_best_weights=True
),
tf.keras.callbacks.ModelCheckpoint(
'models/crypto_transformer_{epoch}.h5',
save_best_only=True,
monitor='val_loss'
),
tf.keras.callbacks.TensorBoard(log_dir='logs')
]
)
# Save final model
model.save('models/crypto_transformer_final')
# Save training history
pd.DataFrame(history.history).to_csv('models/training_history.csv')
logger.info("Training completed")
return model, history
if __name__ == "__main__":
# Create necessary directories
Path('models').mkdir(exist_ok=True)
Path('logs').mkdir(exist_ok=True)
# Train model
model, history = train_model() |