File size: 2,365 Bytes
a69e3df
 
 
 
 
 
 
 
 
70df97f
 
 
 
a4dea77
70df97f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51424b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
task_categories:
- text-classification
language:
- en
size_categories:
- 1K<n<10K
---
# 🧠 OpenAI Moderation Binary Dataset

This dataset is a **binary-labeled** version of the original [OpenAI Moderation Evaluation Dataset](https://github.com/openai/moderation-api-release), created to support safe/unsafe classification tasks in content moderation, safety research, and AI alignment.

---

## πŸ“¦ Dataset Details

- **Original Source:** [OpenAI Moderation API Evaluation Dataset](https://github.com/openai/moderation-api-release)
- **License:** MIT (inherited from original repo)
- **Samples:** 1,680 total
- **Labels:**
  - `"safe"` (no harm labels present)
  - `"unsafe"` (at least one moderation label present)

---

## πŸ“ Structure

Each row consists of:

```json
{
  "prompt": "Some user input text...",
  "prompt_label": "safe"  // or "unsafe"
}
```

---

## 🧹 Preprocessing

This version was derived by:
1. Downloading and parsing the original JSONL dataset (`samples-1680.jsonl.gz`)
2. Creating a new column called `prompt_label`, based on the presence of any of the following 8 moderation labels:
   - `S` (sexual)
   - `S3` (severe sexual)
   - `H` (hate)
   - `H2` (severe hate)
   - `V` (violence)
   - `V2` (severe violence)
   - `HR` (harassment)
   - `SH` (self-harm)
3. Assigning:
   - `prompt_label = "unsafe"` if **any** of those were `1`
   - `prompt_label = "safe"` if **all** were `0`
4. Removing the original moderation columns, leaving only:
   - `prompt`
   - `prompt_label`

---

## πŸ“Š Label Distribution

| Label   | Count | %       |
|---------|-------|---------|
| `safe`   | 1158  | ~68.9%  |
| `unsafe` | 522   | ~31.1%  |

---

## πŸ’‘ Intended Use

This dataset is designed for:
- Binary classification (safe vs unsafe prompt detection)
- Content moderation and safety evaluation
- Educational and research purposes

---

## πŸ“š Citation

If you use this dataset, please cite the original authors of the OpenAI Moderation dataset:

> **OpenAI (2022).**  
> *A Holistic Approach to Undesired Content Detection in the Real World.*  
> [https://github.com/openai/moderation-api-release](https://github.com/openai/moderation-api-release)

---

## πŸ™ Acknowledgements

Huge credit to OpenAI for releasing the original dataset.

This binary-labeled version was created for ease of evaluation and validation.