File size: 16,423 Bytes
3b279c1
 
c88d036
 
 
3b279c1
 
 
 
c88d036
3b279c1
 
c88d036
 
 
 
 
 
 
3b279c1
 
 
 
 
 
 
c88d036
 
 
 
 
 
 
 
 
e059497
c88d036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6985472
c88d036
 
 
 
 
 
 
6985472
 
c88d036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d57f9a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c88d036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d57f9a7
c88d036
 
 
 
 
 
 
 
 
 
 
 
 
 
6985472
c88d036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d15013
c88d036
 
d57f9a7
c88d036
 
 
 
d57f9a7
0d15013
 
c88d036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e059497
d57f9a7
c88d036
e059497
 
 
 
 
 
 
 
 
 
 
d57f9a7
 
 
c88d036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dec2ab
c88d036
8bf7a01
 
 
 
 
 
 
 
c88d036
 
 
 
 
 
 
e059497
 
c88d036
 
 
 
 
 
 
 
 
 
 
 
 
 
e059497
c88d036
 
d57f9a7
c88d036
 
 
 
d57f9a7
c88d036
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import re
import sys
import yaml
from munch import Munch
import unicodedata
import numpy as np
import librosa
import noisereduce as nr
import phonemizer

import torch
import torchaudio
from nltk.tokenize import word_tokenize
import nltk
nltk.download('punkt_tab')

from models import ProsodyPredictor, TextEncoder, StyleEncoder
from Modules.hifigan import Decoder

if sys.platform.startswith("win"):
    try:
        from phonemizer.backend.espeak.wrapper import EspeakWrapper
        import espeakng_loader
        EspeakWrapper.set_library(espeakng_loader.get_library_path())
    except Exception as e:
        print(e)

def espeak_phn(text, lang):
    try:
        my_phonemizer = phonemizer.backend.EspeakBackend(language=lang, preserve_punctuation=True,  with_stress=True, language_switch='remove-flags')
        return my_phonemizer.phonemize([text])[0]
    except Exception as e:
        print(e)

# IPA Phonemizer: https://github.com/bootphon/phonemizer
# Total including extend chars 189

_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
_extend = "∫̆ăη͡123456"

# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) + list(_extend)

dicts = {}
for i in range(len((symbols))):
    dicts[symbols[i]] = i

class TextCleaner:
    def __init__(self, dummy=None):
        self.word_index_dictionary = dicts
        #print(len(dicts))
    def __call__(self, text):
        indexes = []
        for char in text:
            try:
                indexes.append(self.word_index_dictionary[char])
            except KeyError as e:
                #print(char)
                continue
        return indexes

class Preprocess:
    def __text_normalize(self, text):
        punctuation = [",", "、", "،", ";", "(", ".", "。", "…", "!", "–", ":", "?"]
        map_to = "."
        punctuation_pattern = re.compile(f"[{''.join(re.escape(p) for p in punctuation)}]")
        #ensure consistency.
        text = unicodedata.normalize('NFKC', text)
        #replace punctuation that acts like a comma or period
        #text = re.sub(r'\.{2,}', '.', text)
        text = punctuation_pattern.sub(map_to, text)
        #remove or replace special chars except . , { } % $ & ' -  \ /
        text = re.sub(r'[^\w\s.,{}%$&\'\-\[\]\/]', ' ', text)
        #replace consecutive whitespace chars with a single space and strip leading/trailing spaces
        text = re.sub(r'\s+', ' ', text).strip()
        return text
    def __merge_fragments(self, texts, n):
        merged = []
        i = 0
        while i < len(texts):
            fragment = texts[i]
            j = i + 1
            while len(fragment.split()) < n and j < len(texts):
                fragment += ", " + texts[j]
                j += 1
            merged.append(fragment)
            i = j
        if len(merged[-1].split()) < n and len(merged) > 1: #handle last sentence
            merged[-2] = merged[-2] + ", " + merged[-1]
            del merged[-1]
        else:
            merged[-1] = merged[-1]
        return merged
    def wave_preprocess(self, wave):
        to_mel = torchaudio.transforms.MelSpectrogram(n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
        mean, std = -4, 4
        wave_tensor = torch.from_numpy(wave).float()
        mel_tensor = to_mel(wave_tensor)
        mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
        return mel_tensor
    def text_preprocess(self, text, n_merge=12):
        text_norm = self.__text_normalize(text).replace(",", ".").split(".")#split.
        text_norm = [s.strip() for s in text_norm]
        text_norm = list(filter(lambda x: x != '', text_norm)) #filter empty index
        text_norm = self.__merge_fragments(text_norm, n=n_merge) #merge if a sentence has less that n 
        return text_norm
    def length_to_mask(self, lengths):
        mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
        mask = torch.gt(mask+1, lengths.unsqueeze(1))
        return mask

#For inference only
class StyleTTS2(torch.nn.Module):
    def __init__(self, config_path, models_path):
        super().__init__()
        self.register_buffer("get_device", torch.empty(0))
        self.preprocess = Preprocess()

        config = yaml.safe_load(open(config_path))
        args = self.__recursive_munch(config['model_params'])

        assert args.decoder.type in ['hifigan'], 'Decoder type unknown'

        self.decoder            = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
                                        resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
                                        upsample_rates = args.decoder.upsample_rates,
                                        upsample_initial_channel=args.decoder.upsample_initial_channel,
                                        resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
                                        upsample_kernel_sizes=args.decoder.upsample_kernel_sizes)
        self.predictor           = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
        self.text_encoder        = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
        self.style_encoder       = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim)# acoustic style encoder

        self.__load_models(models_path)
    
    def __recursive_munch(self, d):
        if isinstance(d, dict):
            return Munch((k, self.__recursive_munch(v)) for k, v in d.items())
        elif isinstance(d, list):
            return [self.__recursive_munch(v) for v in d]
        else:
            return d
        
    def __init_replacement_func(self, replacements):
        replacement_iter = iter(replacements)
        def replacement(match):
            return next(replacement_iter)
        return replacement
    
    def __replace_outliers_zscore(self, tensor, threshold=3.0, factor=0.95):
        mean = tensor.mean()
        std = tensor.std()
        z = (tensor - mean) / std

        # Identify outliers
        outlier_mask = torch.abs(z) > threshold
        # Compute replacement value, respecting sign
        sign = torch.sign(tensor - mean)
        replacement = mean + sign * (threshold * std * factor)

        result = tensor.clone()
        result[outlier_mask] = replacement[outlier_mask]

        return result
        
    def __load_models(self, models_path):
        module_params = []
        model = {'decoder':self.decoder, 'predictor':self.predictor, 'text_encoder':self.text_encoder, 'style_encoder':self.style_encoder}

        params_whole = torch.load(models_path, map_location='cpu')
        params = params_whole['net']
        params = {key: value for key, value in params.items() if key in model.keys()}

        for key in model:
            try:
                model[key].load_state_dict(params[key])
            except:
                from collections import OrderedDict
                state_dict = params[key]
                new_state_dict = OrderedDict()
                for k, v in state_dict.items():
                    name = k[7:] # remove `module.`
                    new_state_dict[name] = v
                model[key].load_state_dict(new_state_dict, strict=False)

            total_params = sum(p.numel() for p in model[key].parameters())
            print(key,":",total_params)
            module_params.append(total_params)

        print('\nTotal',":",sum(module_params))

    def __compute_style(self, path, denoise, split_dur):
        device = self.get_device.device
        denoise = min(denoise, 1)
        if split_dur != 0: split_dur = max(int(split_dur), 1)
        max_samples = 24000*20 #max 20 seconds ref audio
        print("Computing the style for:", path)
        
        wave, sr = librosa.load(path, sr=24000)
        audio, index = librosa.effects.trim(wave, top_db=30)
        if sr != 24000:
            audio = librosa.resample(audio, sr, 24000)
        if len(audio) > max_samples:
            audio = audio[:max_samples]
        
        if denoise > 0.0:
            audio_denoise = nr.reduce_noise(y=audio, sr=sr, n_fft=2048, win_length=1200, hop_length=300)
            audio = audio*(1-denoise) + audio_denoise*denoise

        with torch.no_grad():
            if split_dur>0 and len(audio)/sr>=4: #Only effective if audio length is >= 4s
                #This option will split the ref audio to multiple parts, calculate styles and average them
                count = 0
                ref_s = None
                jump = sr*split_dur
                total_len = len(audio)
                
                #Need to init before the loop
                mel_tensor = self.preprocess.wave_preprocess(audio[0:jump]).to(device)
                ref_s = self.style_encoder(mel_tensor.unsqueeze(1))
                count += 1
                for i in range(jump, total_len, jump):
                    if i+jump >= total_len:
                        left_dur = (total_len-i)/sr
                        if left_dur >= 0.5: #Still count if left over dur is >= 0.5s
                            mel_tensor = self.preprocess.wave_preprocess(audio[i:total_len]).to(device)
                            ref_s += self.style_encoder(mel_tensor.unsqueeze(1))
                            count += 1
                        continue
                    mel_tensor = self.preprocess.wave_preprocess(audio[i:i+jump]).to(device)
                    ref_s += self.style_encoder(mel_tensor.unsqueeze(1))
                    count += 1
                ref_s /= count
            else:
                mel_tensor = self.preprocess.wave_preprocess(audio).to(device)
                ref_s = self.style_encoder(mel_tensor.unsqueeze(1))

        return ref_s
        
    def __inference(self, phonem, ref_s, speed=1, prev_d_mean=0, t=0.1):
        device = self.get_device.device
        speed = min(max(speed, 0.0001), 2) #speed range [0, 2]
        
        phonem = ' '.join(word_tokenize(phonem))
        tokens = TextCleaner()(phonem)
        tokens.insert(0, 0)
        tokens.append(0)
        tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
        
        with torch.no_grad():
            input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
            text_mask = self.preprocess.length_to_mask(input_lengths).to(device)

            # encode
            t_en = self.text_encoder(tokens, input_lengths, text_mask)
            s = ref_s.to(device)
        
            # cal alignment
            d = self.predictor.text_encoder(t_en, s, input_lengths, text_mask)
            x, _ = self.predictor.lstm(d)
            duration = self.predictor.duration_proj(x) 
            duration = torch.sigmoid(duration).sum(axis=-1)

            if prev_d_mean != 0:#Stabilize speaking speed between splits
                dur_stats = torch.empty(duration.shape).normal_(mean=prev_d_mean, std=duration.std()).to(device)
            else:
                dur_stats = torch.empty(duration.shape).normal_(mean=duration.mean(), std=duration.std()).to(device)
            duration = duration*(1-t) + dur_stats*t
            duration[:,1:-2] = self.__replace_outliers_zscore(duration[:,1:-2]) #Normalize outlier

            duration /= speed
                
            pred_dur = torch.round(duration.squeeze()).clamp(min=1)
            pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
            c_frame = 0
            for i in range(pred_aln_trg.size(0)):
                pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
                c_frame += int(pred_dur[i].data)
            alignment = pred_aln_trg.unsqueeze(0).to(device)

            # encode prosody
            en = (d.transpose(-1, -2) @ alignment)
            F0_pred, N_pred = self.predictor.F0Ntrain(en, s)
            asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))

            out = self.decoder(asr, F0_pred, N_pred, s)
        
        return out.squeeze().cpu().numpy(), duration.mean()
    
    def get_styles(self, speakers, denoise=0.3, avg_style=True):
        if avg_style:   split_dur = 2
        else:           split_dur = 0
        styles = {}
        for id in speakers:
            ref_s = self.__compute_style(speakers[id]['path'], denoise=denoise, split_dur=split_dur)
            styles[id] = {
                'style': ref_s,
                'path': speakers[id]['path'],
                'lang': speakers[id]['lang'],
                'speed': speakers[id]['speed'],
            }
        return styles

    def generate(self, text, styles, stabilize=True, n_merge=16, default_speaker= "[id_1]"):
        if stabilize:   smooth_value=0.2
        else:           smooth_value=0    
        
        list_wav        = []
        prev_d_mean     = 0
        lang_pattern    = r'\[([^\]]+)\]\{([^}]+)\}'

        text = re.sub(r'[\n\r\t\f\v]', '', text)
        #fix lang tokens span to multiple sents
        find_lang_tokens = re.findall(lang_pattern, text)
        if find_lang_tokens:
            cus_text = []
            for lang, t in find_lang_tokens:
                parts = self.preprocess.text_preprocess(t, n_merge=0)
                parts = ".".join([f"[{lang}]" + f"{{{p}}}"for p in parts])
                cus_text.append(parts)
            replacement_func = self.__init_replacement_func(cus_text)
            text = re.sub(lang_pattern, replacement_func, text)

        texts = re.split(r'(\[id_\d+\])', text) #split the text by speaker ids while keeping the ids.
        if len(texts) <= 1 or bool(re.match(r'(\[id_\d+\])', texts[0]) == False): #Add a default speaker
            texts.insert(0, default_speaker)
        curr_id = None
        for i in range(len(texts)): #remove consecutive ids
            if bool(re.match(r'(\[id_\d+\])', texts[i])):
                if texts[i]!=curr_id:
                    curr_id = texts[i]
                else:
                    texts[i] = ''
        del curr_id
        texts = list(filter(lambda x: x != '', texts))

        print("Generating Audio...")
        for i in texts:
            if bool(re.match(r'(\[id_\d+\])', i)):
                #Set up env for matched speaker
                speaker_id = i.strip('[]')
                current_ref_s = styles[speaker_id]['style']
                speed = styles[speaker_id]['speed']
                continue
            text_norm = self.preprocess.text_preprocess(i, n_merge=n_merge)
            for sentence in text_norm:
                cus_phonem = []
                find_lang_tokens = re.findall(lang_pattern, sentence)
                if find_lang_tokens:
                    for lang, t in find_lang_tokens:
                        try:
                            phonem = espeak_phn(t, lang)
                            cus_phonem.append(phonem)
                        except Exception as e:
                            print(e)
                        
                replacement_func = self.__init_replacement_func(cus_phonem)
                phonem =  espeak_phn(sentence, styles[speaker_id]['lang'])
                phonem = re.sub(lang_pattern, replacement_func, phonem)

                wav, prev_d_mean = self.__inference(phonem, current_ref_s, speed=speed, prev_d_mean=prev_d_mean, t=smooth_value)
                wav = wav[4000:-4000] #Remove weird pulse and silent tokens
                list_wav.append(wav)
        
        final_wav = np.concatenate(list_wav)
        final_wav = np.concatenate([np.zeros([4000]), final_wav, np.zeros([4000])], axis=0) # add padding
        return final_wav