File size: 16,423 Bytes
3b279c1 c88d036 3b279c1 c88d036 3b279c1 c88d036 3b279c1 c88d036 e059497 c88d036 6985472 c88d036 6985472 c88d036 d57f9a7 c88d036 d57f9a7 c88d036 6985472 c88d036 0d15013 c88d036 d57f9a7 c88d036 d57f9a7 0d15013 c88d036 e059497 d57f9a7 c88d036 e059497 d57f9a7 c88d036 8dec2ab c88d036 8bf7a01 c88d036 e059497 c88d036 e059497 c88d036 d57f9a7 c88d036 d57f9a7 c88d036 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import re
import sys
import yaml
from munch import Munch
import unicodedata
import numpy as np
import librosa
import noisereduce as nr
import phonemizer
import torch
import torchaudio
from nltk.tokenize import word_tokenize
import nltk
nltk.download('punkt_tab')
from models import ProsodyPredictor, TextEncoder, StyleEncoder
from Modules.hifigan import Decoder
if sys.platform.startswith("win"):
try:
from phonemizer.backend.espeak.wrapper import EspeakWrapper
import espeakng_loader
EspeakWrapper.set_library(espeakng_loader.get_library_path())
except Exception as e:
print(e)
def espeak_phn(text, lang):
try:
my_phonemizer = phonemizer.backend.EspeakBackend(language=lang, preserve_punctuation=True, with_stress=True, language_switch='remove-flags')
return my_phonemizer.phonemize([text])[0]
except Exception as e:
print(e)
# IPA Phonemizer: https://github.com/bootphon/phonemizer
# Total including extend chars 189
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
_extend = "∫̆ăη͡123456"
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) + list(_extend)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
#print(len(dicts))
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError as e:
#print(char)
continue
return indexes
class Preprocess:
def __text_normalize(self, text):
punctuation = [",", "、", "،", ";", "(", ".", "。", "…", "!", "–", ":", "?"]
map_to = "."
punctuation_pattern = re.compile(f"[{''.join(re.escape(p) for p in punctuation)}]")
#ensure consistency.
text = unicodedata.normalize('NFKC', text)
#replace punctuation that acts like a comma or period
#text = re.sub(r'\.{2,}', '.', text)
text = punctuation_pattern.sub(map_to, text)
#remove or replace special chars except . , { } % $ & ' - \ /
text = re.sub(r'[^\w\s.,{}%$&\'\-\[\]\/]', ' ', text)
#replace consecutive whitespace chars with a single space and strip leading/trailing spaces
text = re.sub(r'\s+', ' ', text).strip()
return text
def __merge_fragments(self, texts, n):
merged = []
i = 0
while i < len(texts):
fragment = texts[i]
j = i + 1
while len(fragment.split()) < n and j < len(texts):
fragment += ", " + texts[j]
j += 1
merged.append(fragment)
i = j
if len(merged[-1].split()) < n and len(merged) > 1: #handle last sentence
merged[-2] = merged[-2] + ", " + merged[-1]
del merged[-1]
else:
merged[-1] = merged[-1]
return merged
def wave_preprocess(self, wave):
to_mel = torchaudio.transforms.MelSpectrogram(n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def text_preprocess(self, text, n_merge=12):
text_norm = self.__text_normalize(text).replace(",", ".").split(".")#split.
text_norm = [s.strip() for s in text_norm]
text_norm = list(filter(lambda x: x != '', text_norm)) #filter empty index
text_norm = self.__merge_fragments(text_norm, n=n_merge) #merge if a sentence has less that n
return text_norm
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
#For inference only
class StyleTTS2(torch.nn.Module):
def __init__(self, config_path, models_path):
super().__init__()
self.register_buffer("get_device", torch.empty(0))
self.preprocess = Preprocess()
config = yaml.safe_load(open(config_path))
args = self.__recursive_munch(config['model_params'])
assert args.decoder.type in ['hifigan'], 'Decoder type unknown'
self.decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
upsample_rates = args.decoder.upsample_rates,
upsample_initial_channel=args.decoder.upsample_initial_channel,
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes)
self.predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
self.text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
self.style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim)# acoustic style encoder
self.__load_models(models_path)
def __recursive_munch(self, d):
if isinstance(d, dict):
return Munch((k, self.__recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [self.__recursive_munch(v) for v in d]
else:
return d
def __init_replacement_func(self, replacements):
replacement_iter = iter(replacements)
def replacement(match):
return next(replacement_iter)
return replacement
def __replace_outliers_zscore(self, tensor, threshold=3.0, factor=0.95):
mean = tensor.mean()
std = tensor.std()
z = (tensor - mean) / std
# Identify outliers
outlier_mask = torch.abs(z) > threshold
# Compute replacement value, respecting sign
sign = torch.sign(tensor - mean)
replacement = mean + sign * (threshold * std * factor)
result = tensor.clone()
result[outlier_mask] = replacement[outlier_mask]
return result
def __load_models(self, models_path):
module_params = []
model = {'decoder':self.decoder, 'predictor':self.predictor, 'text_encoder':self.text_encoder, 'style_encoder':self.style_encoder}
params_whole = torch.load(models_path, map_location='cpu')
params = params_whole['net']
params = {key: value for key, value in params.items() if key in model.keys()}
for key in model:
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model[key].load_state_dict(new_state_dict, strict=False)
total_params = sum(p.numel() for p in model[key].parameters())
print(key,":",total_params)
module_params.append(total_params)
print('\nTotal',":",sum(module_params))
def __compute_style(self, path, denoise, split_dur):
device = self.get_device.device
denoise = min(denoise, 1)
if split_dur != 0: split_dur = max(int(split_dur), 1)
max_samples = 24000*20 #max 20 seconds ref audio
print("Computing the style for:", path)
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
if len(audio) > max_samples:
audio = audio[:max_samples]
if denoise > 0.0:
audio_denoise = nr.reduce_noise(y=audio, sr=sr, n_fft=2048, win_length=1200, hop_length=300)
audio = audio*(1-denoise) + audio_denoise*denoise
with torch.no_grad():
if split_dur>0 and len(audio)/sr>=4: #Only effective if audio length is >= 4s
#This option will split the ref audio to multiple parts, calculate styles and average them
count = 0
ref_s = None
jump = sr*split_dur
total_len = len(audio)
#Need to init before the loop
mel_tensor = self.preprocess.wave_preprocess(audio[0:jump]).to(device)
ref_s = self.style_encoder(mel_tensor.unsqueeze(1))
count += 1
for i in range(jump, total_len, jump):
if i+jump >= total_len:
left_dur = (total_len-i)/sr
if left_dur >= 0.5: #Still count if left over dur is >= 0.5s
mel_tensor = self.preprocess.wave_preprocess(audio[i:total_len]).to(device)
ref_s += self.style_encoder(mel_tensor.unsqueeze(1))
count += 1
continue
mel_tensor = self.preprocess.wave_preprocess(audio[i:i+jump]).to(device)
ref_s += self.style_encoder(mel_tensor.unsqueeze(1))
count += 1
ref_s /= count
else:
mel_tensor = self.preprocess.wave_preprocess(audio).to(device)
ref_s = self.style_encoder(mel_tensor.unsqueeze(1))
return ref_s
def __inference(self, phonem, ref_s, speed=1, prev_d_mean=0, t=0.1):
device = self.get_device.device
speed = min(max(speed, 0.0001), 2) #speed range [0, 2]
phonem = ' '.join(word_tokenize(phonem))
tokens = TextCleaner()(phonem)
tokens.insert(0, 0)
tokens.append(0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = self.preprocess.length_to_mask(input_lengths).to(device)
# encode
t_en = self.text_encoder(tokens, input_lengths, text_mask)
s = ref_s.to(device)
# cal alignment
d = self.predictor.text_encoder(t_en, s, input_lengths, text_mask)
x, _ = self.predictor.lstm(d)
duration = self.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
if prev_d_mean != 0:#Stabilize speaking speed between splits
dur_stats = torch.empty(duration.shape).normal_(mean=prev_d_mean, std=duration.std()).to(device)
else:
dur_stats = torch.empty(duration.shape).normal_(mean=duration.mean(), std=duration.std()).to(device)
duration = duration*(1-t) + dur_stats*t
duration[:,1:-2] = self.__replace_outliers_zscore(duration[:,1:-2]) #Normalize outlier
duration /= speed
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
alignment = pred_aln_trg.unsqueeze(0).to(device)
# encode prosody
en = (d.transpose(-1, -2) @ alignment)
F0_pred, N_pred = self.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
out = self.decoder(asr, F0_pred, N_pred, s)
return out.squeeze().cpu().numpy(), duration.mean()
def get_styles(self, speakers, denoise=0.3, avg_style=True):
if avg_style: split_dur = 2
else: split_dur = 0
styles = {}
for id in speakers:
ref_s = self.__compute_style(speakers[id]['path'], denoise=denoise, split_dur=split_dur)
styles[id] = {
'style': ref_s,
'path': speakers[id]['path'],
'lang': speakers[id]['lang'],
'speed': speakers[id]['speed'],
}
return styles
def generate(self, text, styles, stabilize=True, n_merge=16, default_speaker= "[id_1]"):
if stabilize: smooth_value=0.2
else: smooth_value=0
list_wav = []
prev_d_mean = 0
lang_pattern = r'\[([^\]]+)\]\{([^}]+)\}'
text = re.sub(r'[\n\r\t\f\v]', '', text)
#fix lang tokens span to multiple sents
find_lang_tokens = re.findall(lang_pattern, text)
if find_lang_tokens:
cus_text = []
for lang, t in find_lang_tokens:
parts = self.preprocess.text_preprocess(t, n_merge=0)
parts = ".".join([f"[{lang}]" + f"{{{p}}}"for p in parts])
cus_text.append(parts)
replacement_func = self.__init_replacement_func(cus_text)
text = re.sub(lang_pattern, replacement_func, text)
texts = re.split(r'(\[id_\d+\])', text) #split the text by speaker ids while keeping the ids.
if len(texts) <= 1 or bool(re.match(r'(\[id_\d+\])', texts[0]) == False): #Add a default speaker
texts.insert(0, default_speaker)
curr_id = None
for i in range(len(texts)): #remove consecutive ids
if bool(re.match(r'(\[id_\d+\])', texts[i])):
if texts[i]!=curr_id:
curr_id = texts[i]
else:
texts[i] = ''
del curr_id
texts = list(filter(lambda x: x != '', texts))
print("Generating Audio...")
for i in texts:
if bool(re.match(r'(\[id_\d+\])', i)):
#Set up env for matched speaker
speaker_id = i.strip('[]')
current_ref_s = styles[speaker_id]['style']
speed = styles[speaker_id]['speed']
continue
text_norm = self.preprocess.text_preprocess(i, n_merge=n_merge)
for sentence in text_norm:
cus_phonem = []
find_lang_tokens = re.findall(lang_pattern, sentence)
if find_lang_tokens:
for lang, t in find_lang_tokens:
try:
phonem = espeak_phn(t, lang)
cus_phonem.append(phonem)
except Exception as e:
print(e)
replacement_func = self.__init_replacement_func(cus_phonem)
phonem = espeak_phn(sentence, styles[speaker_id]['lang'])
phonem = re.sub(lang_pattern, replacement_func, phonem)
wav, prev_d_mean = self.__inference(phonem, current_ref_s, speed=speed, prev_d_mean=prev_d_mean, t=smooth_value)
wav = wav[4000:-4000] #Remove weird pulse and silent tokens
list_wav.append(wav)
final_wav = np.concatenate(list_wav)
final_wav = np.concatenate([np.zeros([4000]), final_wav, np.zeros([4000])], axis=0) # add padding
return final_wav |