zifei9 commited on
Commit
16b0950
·
verified ·
1 Parent(s): b3c97ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -3
README.md CHANGED
@@ -1,3 +1,58 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ This is a d-Matrix functional reference of the whisper-large-v3-turbo model.
6
+ The reference provides the following functional *configurations*:
7
+ Configuration | Explanation
8
+ :-- | :--
9
+ **`BASELINE`** | a reference functionally equivalent to the original model
10
+ **`BASIC`** | all linear algebraic operands quantized to `MXINT8-64`, and all other operations transformed to approximated kernel simulations
11
+
12
+
13
+ ### Usage
14
+
15
+ Install d-Matrix [Dmx_Compressor](https://github.com/d-matrix-ai/dmx-compressor) first.
16
+ ```sh
17
+ pip install dmx_compressor
18
+ ```
19
+
20
+ The following is an example model and its evaluation.
21
+
22
+ ```python
23
+ import torch
24
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
25
+ from datasets import load_dataset
26
+ from dmx.compressor.modeling import DmxModel
27
+
28
+
29
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
30
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
31
+
32
+ model_id = "d-matrix/whisper-large-v3-turbo"
33
+
34
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
35
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
36
+ )
37
+ model.to(device)
38
+
39
+ processor = AutoProcessor.from_pretrained(model_id)
40
+
41
+ pipe = pipeline(
42
+ "automatic-speech-recognition",
43
+ model=model,
44
+ tokenizer=processor.tokenizer,
45
+ feature_extractor=processor.feature_extractor,
46
+ torch_dtype=torch_dtype,
47
+ device=device,
48
+ )
49
+
50
+ dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
51
+ sample = dataset[0]["audio"]
52
+ shorter_audio = sample["array"][:1000]
53
+
54
+ pipe.model = DmxModel.from_torch(pipe.model)
55
+
56
+ result = pipe(shorter_audio)
57
+ print(result["text"])
58
+ ```