Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,58 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
This is a d-Matrix functional reference of the whisper-large-v3-turbo model.
|
6 |
+
The reference provides the following functional *configurations*:
|
7 |
+
Configuration | Explanation
|
8 |
+
:-- | :--
|
9 |
+
**`BASELINE`** | a reference functionally equivalent to the original model
|
10 |
+
**`BASIC`** | all linear algebraic operands quantized to `MXINT8-64`, and all other operations transformed to approximated kernel simulations
|
11 |
+
|
12 |
+
|
13 |
+
### Usage
|
14 |
+
|
15 |
+
Install d-Matrix [Dmx_Compressor](https://github.com/d-matrix-ai/dmx-compressor) first.
|
16 |
+
```sh
|
17 |
+
pip install dmx_compressor
|
18 |
+
```
|
19 |
+
|
20 |
+
The following is an example model and its evaluation.
|
21 |
+
|
22 |
+
```python
|
23 |
+
import torch
|
24 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
25 |
+
from datasets import load_dataset
|
26 |
+
from dmx.compressor.modeling import DmxModel
|
27 |
+
|
28 |
+
|
29 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
30 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
31 |
+
|
32 |
+
model_id = "d-matrix/whisper-large-v3-turbo"
|
33 |
+
|
34 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
35 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
36 |
+
)
|
37 |
+
model.to(device)
|
38 |
+
|
39 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
40 |
+
|
41 |
+
pipe = pipeline(
|
42 |
+
"automatic-speech-recognition",
|
43 |
+
model=model,
|
44 |
+
tokenizer=processor.tokenizer,
|
45 |
+
feature_extractor=processor.feature_extractor,
|
46 |
+
torch_dtype=torch_dtype,
|
47 |
+
device=device,
|
48 |
+
)
|
49 |
+
|
50 |
+
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
51 |
+
sample = dataset[0]["audio"]
|
52 |
+
shorter_audio = sample["array"][:1000]
|
53 |
+
|
54 |
+
pipe.model = DmxModel.from_torch(pipe.model)
|
55 |
+
|
56 |
+
result = pipe(shorter_audio)
|
57 |
+
print(result["text"])
|
58 |
+
```
|