Delete model.py
Browse files
model.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
from transformers import PretrainedConfig, PreTrainedModel
|
2 |
-
|
3 |
-
class DiffusionConfig(PretrainedConfig):
|
4 |
-
"""Configuration class for Diffusion-LLM model."""
|
5 |
-
model_type = "diffusionLM"
|
6 |
-
|
7 |
-
def __init__(
|
8 |
-
self,
|
9 |
-
vocab_size: int = 50257,
|
10 |
-
hidden_size: int = 768,
|
11 |
-
num_hidden_layers: int = 12,
|
12 |
-
num_attention_heads: int = 12,
|
13 |
-
intermediate_size: int = 3072,
|
14 |
-
hidden_dropout_prob: float = 0.1,
|
15 |
-
attention_probs_dropout_prob: float = 0.1,
|
16 |
-
max_position_embeddings: int = 1024,
|
17 |
-
initializer_range: float = 0.02,
|
18 |
-
layer_norm_eps: float = 1e-12,
|
19 |
-
pad_token_id: int = 0,
|
20 |
-
mask_token_id: int = 50256,
|
21 |
-
eos_token_id: int = 50256,
|
22 |
-
num_timesteps: int = 100,
|
23 |
-
time_embed_dim: int = 128,
|
24 |
-
**kwargs
|
25 |
-
):
|
26 |
-
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
27 |
-
self.vocab_size = vocab_size
|
28 |
-
self.hidden_size = hidden_size
|
29 |
-
self.num_hidden_layers = num_hidden_layers
|
30 |
-
self.num_attention_heads = num_attention_heads
|
31 |
-
self.intermediate_size = intermediate_size
|
32 |
-
self.hidden_dropout_prob = hidden_dropout_prob
|
33 |
-
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
34 |
-
self.max_position_embeddings = max_position_embeddings
|
35 |
-
self.initializer_range = initializer_range
|
36 |
-
self.layer_norm_eps = layer_norm_eps
|
37 |
-
self.mask_token_id = mask_token_id
|
38 |
-
self.eos_token_id = eos_token_id
|
39 |
-
self.num_timesteps = num_timesteps
|
40 |
-
self.time_embed_dim = time_embed_dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|