File size: 4,100 Bytes
f213378
 
 
3d5e57e
f213378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import torch.nn as nn
from transformers import PretrainedConfig, PreTrainedModel
from diffusionLM.model.diffusionLM import LLaDAModel

class DiffusionConfig(PretrainedConfig):
    """Configuration class for Diffusion-LLM model."""
    model_type = "diffusionLM"
    
    def __init__(
        self,
        vocab_size: int = 50257,
        hidden_size: int = 768,
        num_hidden_layers: int = 12,
        num_attention_heads: int = 12,
        intermediate_size: int = 3072,
        hidden_dropout_prob: float = 0.1,
        attention_probs_dropout_prob: float = 0.1,
        max_position_embeddings: int = 1024,
        initializer_range: float = 0.02,
        layer_norm_eps: float = 1e-12,
        pad_token_id: int = 0,
        mask_token_id: int = 50256,
        eos_token_id: int = 50256,
        num_timesteps: int = 100,
        time_embed_dim: int = 128,
        **kwargs
    ):
        super().__init__(pad_token_id=pad_token_id, **kwargs)
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads 
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.mask_token_id = mask_token_id
        self.eos_token_id = eos_token_id
        self.num_timesteps = num_timesteps
        self.time_embed_dim = time_embed_dim

class DiffusionLLM(PreTrainedModel):
    """Main Diffusion-LLM model class"""
    config_class = DiffusionConfig
    base_model_prefix = "diffusionLM"

    def __init__(self, config: DiffusionConfig):
        super().__init__(config)
        self.model = LLaDAModel(config)
        self.init_weights()

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        timesteps=None,
        labels=None,
        return_dict=True,
    ):
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            timesteps=timesteps,
            labels=labels,
        )
        
        return outputs

    def generate(
        self,
        prompt=None,
        max_length=100,
        num_inference_steps=50,
        temperature=1.0,
        strategy='random',
        top_p=0.9,
        top_k=50,
        num_beams=5,
        return_scores=False,
        use_streaming=False,
        callback_fn=None
    ):
        """Unified generation interface"""
        if use_streaming:
            return self.generate_stream(
                prompt=prompt,
                max_length=max_length,
                num_inference_steps=num_inference_steps,
                temperature=temperature,
                strategy=strategy,
                top_p=top_p,
                top_k=top_k,
                num_beams=num_beams,
                callback_fn=callback_fn
            )
        else:
            return self.model.generate(
                prompt=prompt,
                max_length=max_length,
                num_inference_steps=num_inference_steps,
                temperature=temperature,
                strategy=strategy,
                top_p=top_p,
                top_k=top_k,
                num_beams=num_beams,
                return_scores=return_scores
            )

    def generate_stream(self, **kwargs):
        """Streaming generation wrapper"""
        return self.model.generate_stream(**kwargs)

    def prepare_inputs_for_generation(self, input_ids, **kwargs):
        """Prepare inputs for generation compatibility"""
        return {
            "input_ids": input_ids,
            "attention_mask": kwargs.get("attention_mask", None),
            "timesteps": kwargs.get("timesteps", None),
        }

    @staticmethod
    def _reorder_cache(past, beam_idx):
        """Reorder cache for beam search compatibility"""
        return past