Create handler.py
Browse files- handler.py +33 -0
handler.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any
|
2 |
+
import numpy as np
|
3 |
+
import joblib
|
4 |
+
|
5 |
+
class EndpointHandler():
|
6 |
+
def __init__(self, path: str = ""):
|
7 |
+
"""
|
8 |
+
Initialize the model and encoder when the endpoint starts.
|
9 |
+
"""
|
10 |
+
self.model = joblib.load(f"{path}/soil.pkl")
|
11 |
+
self.label_encoder = joblib.load(f"{path}/label_encoder.pkl")
|
12 |
+
|
13 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
14 |
+
"""
|
15 |
+
Perform prediction using the trained model.
|
16 |
+
Expects input data in the format:
|
17 |
+
{
|
18 |
+
"inputs": [N, P, K, temperature, humidity, ph, rainfall]
|
19 |
+
}
|
20 |
+
Returns:
|
21 |
+
{
|
22 |
+
"crop": predicted_crop_name
|
23 |
+
}
|
24 |
+
"""
|
25 |
+
inputs = data.get("inputs")
|
26 |
+
if inputs is None:
|
27 |
+
return {"error": "No input data provided."}
|
28 |
+
|
29 |
+
inputs = np.array(inputs).reshape(1, -1)
|
30 |
+
prediction = self.model.predict(inputs)
|
31 |
+
crop = self.label_encoder.inverse_transform(prediction)
|
32 |
+
|
33 |
+
return {"crop": crop[0]}
|