--- language: - ja tags: - sentence-similarity - feature-extraction base_model: cl-nagoya/ruri-v3-pt-310m widget: [] pipeline_tag: sentence-similarity license: apache-2.0 datasets: - cl-nagoya/ruri-v3-dataset-ft --- # Ruri: Japanese General Text Embeddings **Ruri v3** is a general-purpose Japanese text embedding model built on top of [**ModernBERT-Ja**](https://huggingface.co/collections/sbintuitions/modernbert-ja-67b68fe891132877cf67aa0a). Ruri v3 offers several key technical advantages: - **State-of-the-art performance** for Japanese text embedding tasks. - **Supports sequence lengths up to 8192 tokens** - Previous versions of Ruri (v1, v2) were limited to 512. - **Expanded vocabulary of 100K tokens**, compared to 32K in v1 and v2 - The larger vocabulary make input sequences shorter, improving efficiency. - **Integrated FlashAttention**, following ModernBERT's architecture - Enables faster inference and fine-tuning. - **Tokenizer based solely on SentencePiece** - Unlike previous versions, which relied on Japanese-specific BERT tokenizers and required pre-tokenized input, Ruri v3 performs tokenization with SentencePiece only—no external word segmentation tool is required. ## Model Series We provide Ruri-v3 in several model sizes. Below is a summary of each model. |ID| #Param. | #Param.
w/o Emb.|Dim.|#Layers|Avg. JMTEB| |-|-|-|-|-|-| |[cl-nagoya/ruri-v3-30m](https://huggingface.co/cl-nagoya/ruri-v3-30m)|37M|10M|256|10|74.51| |[cl-nagoya/ruri-v3-70m](https://huggingface.co/cl-nagoya/ruri-v3-70m)|70M|31M|384|13|75.48| |[cl-nagoya/ruri-v3-130m](https://huggingface.co/cl-nagoya/ruri-v3-130m)|132M|80M|512|19|76.55| |[**cl-nagoya/ruri-v3-310m**](https://huggingface.co/cl-nagoya/ruri-v3-310m)|315M|236M|768|25|**77.24**| ## Usage You can use our models directly with the transformers library v4.48.0 or higher: ```bash pip install -U "transformers>=4.48.0" sentence-transformers ``` Additionally, if your GPUs support Flash Attention 2, we recommend using our models with Flash Attention 2. ``` pip install flash-attn --no-build-isolation ``` Then you can load this model and run inference. ```python import torch import torch.nn.functional as F from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub device = "cuda" if torch.cuda.is_available() else "cpu" model = SentenceTransformer("cl-nagoya/ruri-v3-310m", device=device) # Ruri v3 employs a 1+3 prefix scheme to distinguish between different types of text inputs: # "" (empty string) is used for encoding semantic meaning. # "トピック: " is used for classification, clustering, and encoding topical information. # "検索クエリ: " is used for queries in retrieval tasks. # "検索文書: " is used for documents to be retrieved. sentences = [ "川べりでサーフボードを持った人たちがいます", "サーファーたちが川べりに立っています", "トピック: 瑠璃色のサーファー", "検索クエリ: 瑠璃色はどんな色?", "検索文書: 瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。", ] embeddings = model.encode(sentences, convert_to_tensor=True) print(embeddings.size()) # [5, 768] similarities = F.cosine_similarity(embeddings.unsqueeze(0), embeddings.unsqueeze(1), dim=2) print(similarities) # [[1.0000, 0.9603, 0.8157, 0.7074, 0.6916], # [0.9603, 1.0000, 0.8192, 0.7014, 0.6819], # [0.8157, 0.8192, 1.0000, 0.8701, 0.8470], # [0.7074, 0.7014, 0.8701, 1.0000, 0.9746], # [0.6916, 0.6819, 0.8470, 0.9746, 1.0000]] ``` ## Benchmarks ### JMTEB Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB). |Model|#Param.|Avg.|Retrieval|STS|Classfification|Reranking|Clustering|PairClassification| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| |||||||||| |[Ruri-v3-30m](https://huggingface.co/cl-nagoya/ruri-v3-30m)|37M|74.51|78.08|82.48|74.80|93.00|52.12|62.40| |[Ruri-v3-70m](https://huggingface.co/cl-nagoya/ruri-v3-70m)|70M|75.48|79.96|79.82|76.97|93.27|52.70|61.75| |[Ruri-v3-130m](https://huggingface.co/cl-nagoya/ruri-v3-130m)|132M|76.55|81.89|79.25|77.16|93.31|55.36|62.26| |[**Ruri-v3-310m**](https://huggingface.co/cl-nagoya/ruri-v3-310m)
(this model)|**315M**|**77.24**|81.89|81.22|78.66|93.43|55.69|62.60| |||||||||| |[sbintuitions/sarashina-embedding-v1-1b](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b)|1.22B|75.50|77.61|82.71|78.37|93.74|53.86|62.00| |[PLaMo-Embedding-1B](https://huggingface.co/pfnet/plamo-embedding-1b)|1.05B|76.10|79.94|83.14|77.20|93.57|53.47|62.37| |||||||||| |OpenAI/text-embedding-ada-002|-|69.48|64.38|79.02|69.75|93.04|48.30|62.40| |OpenAI/text-embedding-3-small|-|70.86|66.39|79.46|73.06|92.92|51.06|62.27| |OpenAI/text-embedding-3-large|-|73.97|74.48|82.52|77.58|93.58|53.32|62.35| |||||||||| |[pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja)|133M|70.44|59.02|78.71|76.82|91.90|49.78|66.39| |[pkshatech/GLuCoSE-base-ja-v2](https://huggingface.co/pkshatech/GLuCoSE-base-ja-v2)|133M|72.23|73.36|82.96|74.21|93.01|48.65|62.37| |[retrieva-jp/amber-base](https://huggingface.co/retrieva-jp/amber-base)|130M|72.12|73.40|77.81|76.14|93.27|48.05|64.03| |[retrieva-jp/amber-large](https://huggingface.co/retrieva-jp/amber-large)|315M|73.22|75.40|79.32|77.14|93.54|48.73|60.97| |||||||||| |[sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE)|472M|64.70|40.12|76.56|72.66|91.63|44.88|62.33| |[intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)|118M|69.52|67.27|80.07|67.62|93.03|46.91|62.19| |[intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base)|278M|70.12|68.21|79.84|69.30|92.85|48.26|62.26| |[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)|560M|71.65|70.98|79.70|72.89|92.96|51.24|62.15| |||||||||| |[Ruri-Small](https://huggingface.co/cl-nagoya/ruri-small)|68M|71.53|69.41|82.79|76.22|93.00|51.19|62.11| |[Ruri-Small v2](https://huggingface.co/cl-nagoya/ruri-small-v2)|68M|73.30|73.94|82.91|76.17|93.20|51.58|62.32| |[Ruri-Base](https://huggingface.co/cl-nagoya/ruri-base)|111M|71.91|69.82|82.87|75.58|92.91|54.16|62.38| |[Ruri-Base v2](https://huggingface.co/cl-nagoya/ruri-base-v2)|111M|72.48|72.33|83.03|75.34|93.17|51.38|62.35| |[Ruri-Large](https://huggingface.co/cl-nagoya/ruri-large)|337M|73.31|73.02|83.13|77.43|92.99|51.82|62.29| |[Ruri-Large v2](https://huggingface.co/cl-nagoya/ruri-large-v2)|337M|74.55|76.34|83.17|77.18|93.21|52.14|62.27| ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [cl-nagoya/ruri-v3-pt-310m](https://huggingface.co/cl-nagoya/ruri-v3-pt-310m) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 - **Similarity Function:** Cosine Similarity - **Language:** Japanese - **License:** Apache 2.0 - **Paper:** https://arxiv.org/abs/2409.07737 ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citation ```bibtex @misc{ Ruri, title={{Ruri: Japanese General Text Embeddings}}, author={Hayato Tsukagoshi and Ryohei Sasano}, year={2024}, eprint={2409.07737}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2409.07737}, } ``` ## License This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).