Sentence Similarity
Safetensors
Japanese
modernbert
feature-extraction
hpprc commited on
Commit
73b2b2e
·
verified ·
1 Parent(s): 6a30c5a

Upload 17 files

Browse files
results/Classification/scores_amazon_counterfactual_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8212903958100242,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.9055793991416309,
9
+ "macro_f1": 0.6510076252723311
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.9184549356223176,
13
+ "macro_f1": 0.756611138600253
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.936830835117773,
19
+ "macro_f1": 0.8212903958100242
20
+ }
21
+ }
22
+ }
23
+ }
results/Classification/scores_amazon_review_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.6106205588763483,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.456,
9
+ "macro_f1": 0.44947743361535253
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.6058,
13
+ "macro_f1": 0.602223447104313
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.6132,
19
+ "macro_f1": 0.6106205588763483
20
+ }
21
+ }
22
+ }
23
+ }
results/Classification/scores_massive_intent_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.821659588084153,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.7830791933103788,
9
+ "macro_f1": 0.7540349043356395
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8558780127889818,
13
+ "macro_f1": 0.8412198611245395
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8493611297915266,
19
+ "macro_f1": 0.821659588084153
20
+ }
21
+ }
22
+ }
23
+ }
results/Classification/scores_massive_scenario_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8927605477819499,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.8612887358583374,
9
+ "macro_f1": 0.8475812013823129
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8957206099360551,
13
+ "macro_f1": 0.889349188280443
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8927370544720915,
19
+ "macro_f1": 0.8927605477819499
20
+ }
21
+ }
22
+ }
23
+ }
results/Clustering/scores_livedoor_news.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.6198770016343527,
4
+ "details": {
5
+ "optimal_clustering_model_name": "MiniBatchKMeans",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.6130011361971373,
9
+ "homogeneity_score": 0.6020130359528088,
10
+ "completeness_score": 0.6243978092094987
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.5962671368925023,
14
+ "homogeneity_score": 0.5811463016386679,
15
+ "completeness_score": 0.6121958497856022
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.574682592952658,
19
+ "homogeneity_score": 0.5686551081511829,
20
+ "completeness_score": 0.5808392238234845
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.5978998508456345,
24
+ "homogeneity_score": 0.582382606601413,
25
+ "completeness_score": 0.6142666261599271
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "MiniBatchKMeans": {
30
+ "v_measure_score": 0.6198770016343527,
31
+ "homogeneity_score": 0.6102816569132538,
32
+ "completeness_score": 0.6297788978398051
33
+ }
34
+ }
35
+ }
36
+ }
results/Clustering/scores_mewsc16.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.4938330752654621,
4
+ "details": {
5
+ "optimal_clustering_model_name": "Birch",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.5156167461651439,
9
+ "homogeneity_score": 0.564258229752961,
10
+ "completeness_score": 0.47469591858066335
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.5567865030669769,
14
+ "homogeneity_score": 0.5991745068307929,
15
+ "completeness_score": 0.5199996459830565
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.437046545249617,
19
+ "homogeneity_score": 0.4798220986983772,
20
+ "completeness_score": 0.40127350306484766
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.5639601753239182,
24
+ "homogeneity_score": 0.6063086319538272,
25
+ "completeness_score": 0.527141271397583
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "Birch": {
30
+ "v_measure_score": 0.4938330752654621,
31
+ "homogeneity_score": 0.5270581166850505,
32
+ "completeness_score": 0.4645485534255365
33
+ }
34
+ }
35
+ }
36
+ }
results/PairClassification/scores_paws_x_ja.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "binary_f1",
3
+ "metric_value": 0.6259758694109298,
4
+ "details": {
5
+ "optimal_distance_metric": "dot_similarities",
6
+ "val_scores": {
7
+ "cosine_distances": {
8
+ "accuracy": 0.5725,
9
+ "accuracy_threshold": 0.7325241565704346,
10
+ "binary_f1": 0.5979670522257273,
11
+ "binary_f1_threshold": 1.0
12
+ },
13
+ "manhatten_distances": {
14
+ "accuracy": 0.6105,
15
+ "accuracy_threshold": 63.98142623901367,
16
+ "binary_f1": 0.6014825273561596,
17
+ "binary_f1_threshold": 395.8541259765625
18
+ },
19
+ "euclidean_distances": {
20
+ "accuracy": 0.6115,
21
+ "accuracy_threshold": 2.9641363620758057,
22
+ "binary_f1": 0.6016949152542372,
23
+ "binary_f1_threshold": 18.21161460876465
24
+ },
25
+ "dot_similarities": {
26
+ "accuracy": 0.583,
27
+ "accuracy_threshold": 872.2387084960938,
28
+ "binary_f1": 0.6023329798515377,
29
+ "binary_f1_threshold": 735.9739990234375
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "dot_similarities": {
34
+ "accuracy": 0.581,
35
+ "accuracy_threshold": 872.2387084960938,
36
+ "binary_f1": 0.6259758694109298,
37
+ "binary_f1_threshold": 735.9739990234375
38
+ }
39
+ }
40
+ }
41
+ }
results/Reranking/scores_esci.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9343186677190654,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "ndcg@10": 0.9470348664613528,
9
+ "ndcg@20": 0.9578682740907674,
10
+ "ndcg@40": 0.9654194921086661
11
+ },
12
+ "dot_score": {
13
+ "ndcg@10": 0.9392104044460415,
14
+ "ndcg@20": 0.9517801007430513,
15
+ "ndcg@40": 0.9601312974205363
16
+ },
17
+ "euclidean_distance": {
18
+ "ndcg@10": 0.9464007864974945,
19
+ "ndcg@20": 0.9573505616979566,
20
+ "ndcg@40": 0.9649519050597076
21
+ }
22
+ },
23
+ "test_scores": {
24
+ "cosine_similarity": {
25
+ "ndcg@10": 0.9343186677190654,
26
+ "ndcg@20": 0.9503468163615926,
27
+ "ndcg@40": 0.9590645882216304
28
+ }
29
+ }
30
+ }
31
+ }
results/Retrieval/scores_jagovfaqs_22k.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.7787754194132134,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.6548698449839134,
9
+ "accuracy@3": 0.8101784147411524,
10
+ "accuracy@5": 0.8531734425270547,
11
+ "accuracy@10": 0.89587598713074,
12
+ "ndcg@10": 0.7791387074676754,
13
+ "mrr@10": 0.7413217222152583
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.4910792629423808,
17
+ "accuracy@3": 0.6806083650190115,
18
+ "accuracy@5": 0.741152383737935,
19
+ "accuracy@10": 0.804913717461246,
20
+ "ndcg@10": 0.6486117073018491,
21
+ "mrr@10": 0.5984882565681033
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.6516525299795262,
25
+ "accuracy@3": 0.8110558642878034,
26
+ "accuracy@5": 0.8520035097981866,
27
+ "accuracy@10": 0.8964609534951741,
28
+ "ndcg@10": 0.7781881943647594,
29
+ "mrr@10": 0.739879269442007
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.6494152046783626,
35
+ "accuracy@3": 0.8096491228070175,
36
+ "accuracy@5": 0.8552631578947368,
37
+ "accuracy@10": 0.9002923976608187,
38
+ "ndcg@10": 0.7787754194132134,
39
+ "mrr@10": 0.7394212382808872
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_jaqket.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.7038903636852758,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.5417085427135678,
9
+ "accuracy@3": 0.7608040201005025,
10
+ "accuracy@5": 0.821105527638191,
11
+ "accuracy@10": 0.857286432160804,
12
+ "ndcg@10": 0.7077597877351898,
13
+ "mrr@10": 0.6586655499720832
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.3608040201005025,
17
+ "accuracy@3": 0.49547738693467336,
18
+ "accuracy@5": 0.5547738693467337,
19
+ "accuracy@10": 0.6201005025125628,
20
+ "ndcg@10": 0.48596673144333313,
21
+ "mrr@10": 0.44361489989630637
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.5417085427135678,
25
+ "accuracy@3": 0.7577889447236181,
26
+ "accuracy@5": 0.8231155778894472,
27
+ "accuracy@10": 0.8582914572864322,
28
+ "ndcg@10": 0.7079566000561661,
29
+ "mrr@10": 0.6586160963547902
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.526579739217653,
35
+ "accuracy@3": 0.7552657973921765,
36
+ "accuracy@5": 0.8144433299899699,
37
+ "accuracy@10": 0.8706118355065195,
38
+ "ndcg@10": 0.7038903636852758,
39
+ "mrr@10": 0.6498861664358158
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_mrtydi.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.4906924953691417,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.37823275862068967,
9
+ "accuracy@3": 0.5668103448275862,
10
+ "accuracy@5": 0.6368534482758621,
11
+ "accuracy@10": 0.7101293103448276,
12
+ "ndcg@10": 0.5413311560443561,
13
+ "mrr@10": 0.4875230911330045
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.21336206896551724,
17
+ "accuracy@3": 0.36745689655172414,
18
+ "accuracy@5": 0.4353448275862069,
19
+ "accuracy@10": 0.53125,
20
+ "ndcg@10": 0.36305057475619895,
21
+ "mrr@10": 0.3104350540503558
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.38362068965517243,
25
+ "accuracy@3": 0.5657327586206896,
26
+ "accuracy@5": 0.6379310344827587,
27
+ "accuracy@10": 0.7101293103448276,
28
+ "ndcg@10": 0.5443451625184184,
29
+ "mrr@10": 0.49149048987411037
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.3736111111111111,
35
+ "accuracy@3": 0.5347222222222222,
36
+ "accuracy@5": 0.6083333333333333,
37
+ "accuracy@10": 0.6916666666666667,
38
+ "ndcg@10": 0.4906924953691417,
39
+ "mrr@10": 0.47281470458553737
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_nlp_journal_abs_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9935436297129833,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 1.0,
9
+ "accuracy@3": 1.0,
10
+ "accuracy@5": 1.0,
11
+ "accuracy@10": 1.0,
12
+ "ndcg@10": 1.0,
13
+ "mrr@10": 1.0
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.8688524590163934,
17
+ "accuracy@3": 0.9754098360655737,
18
+ "accuracy@5": 1.0,
19
+ "accuracy@10": 1.0,
20
+ "ndcg@10": 0.9405886901730665,
21
+ "mrr@10": 0.9206284153005463
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 1.0,
25
+ "accuracy@3": 1.0,
26
+ "accuracy@5": 1.0,
27
+ "accuracy@10": 1.0,
28
+ "ndcg@10": 1.0,
29
+ "mrr@10": 1.0
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.9878048780487805,
35
+ "accuracy@3": 0.9959349593495935,
36
+ "accuracy@5": 0.9979674796747967,
37
+ "accuracy@10": 0.9979674796747967,
38
+ "ndcg@10": 0.9935436297129833,
39
+ "mrr@10": 0.9920392953929539
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_nlp_journal_title_abs.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9800724651571329,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.9590163934426229,
9
+ "accuracy@3": 0.9754098360655737,
10
+ "accuracy@5": 0.9836065573770492,
11
+ "accuracy@10": 1.0,
12
+ "ndcg@10": 0.9787291019625602,
13
+ "mrr@10": 0.9719945355191256
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.8770491803278688,
17
+ "accuracy@3": 0.9754098360655737,
18
+ "accuracy@5": 0.9918032786885246,
19
+ "accuracy@10": 1.0,
20
+ "ndcg@10": 0.9465822466240205,
21
+ "mrr@10": 0.9285519125683058
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.9590163934426229,
25
+ "accuracy@3": 0.9754098360655737,
26
+ "accuracy@5": 0.9836065573770492,
27
+ "accuracy@10": 1.0,
28
+ "ndcg@10": 0.9782768299015435,
29
+ "mrr@10": 0.9715391621129326
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.959349593495935,
35
+ "accuracy@3": 0.9898373983739838,
36
+ "accuracy@5": 0.991869918699187,
37
+ "accuracy@10": 0.9939024390243902,
38
+ "ndcg@10": 0.9800724651571329,
39
+ "mrr@10": 0.9753274616079494
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_nlp_journal_title_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9662644169750596,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.9180327868852459,
9
+ "accuracy@3": 0.9918032786885246,
10
+ "accuracy@5": 0.9918032786885246,
11
+ "accuracy@10": 0.9918032786885246,
12
+ "ndcg@10": 0.9624303956967228,
13
+ "mrr@10": 0.9521857923497267
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.8524590163934426,
17
+ "accuracy@3": 0.9426229508196722,
18
+ "accuracy@5": 0.9754098360655737,
19
+ "accuracy@10": 0.9836065573770492,
20
+ "ndcg@10": 0.9211840621538752,
21
+ "mrr@10": 0.9006830601092896
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.9180327868852459,
25
+ "accuracy@3": 0.9836065573770492,
26
+ "accuracy@5": 0.9836065573770492,
27
+ "accuracy@10": 0.9918032786885246,
28
+ "ndcg@10": 0.9612517660828541,
29
+ "mrr@10": 0.9508196721311475
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.9308943089430894,
35
+ "accuracy@3": 0.983739837398374,
36
+ "accuracy@5": 0.9898373983739838,
37
+ "accuracy@10": 0.9939024390243902,
38
+ "ndcg@10": 0.9662644169750596,
39
+ "mrr@10": 0.956963801780875
40
+ }
41
+ }
42
+ }
43
+ }
results/STS/scores_jsick.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.7812165639898206,
4
+ "details": {
5
+ "optimal_similarity_metric": "manhatten_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.8081424308280184,
9
+ "spearman": 0.7858960474676613
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.8149453883286166,
13
+ "spearman": 0.7866688378992329
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.8149453883286166,
17
+ "spearman": 0.7866688378992329
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.7289190000591521,
21
+ "spearman": 0.6947631991077574
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "manhatten_distance": {
26
+ "pearson": 0.8101410164828766,
27
+ "spearman": 0.7812165639898206
28
+ }
29
+ }
30
+ }
31
+ }
results/STS/scores_jsts.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.8432397778118456,
4
+ "details": {
5
+ "optimal_similarity_metric": "manhatten_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.8535555729076842,
9
+ "spearman": 0.819115099484669
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.8633943133209987,
13
+ "spearman": 0.8261879574678256
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.8633943133209987,
17
+ "spearman": 0.8261879574678256
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.713304993887736,
21
+ "spearman": 0.6363102927036544
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "manhatten_distance": {
26
+ "pearson": 0.8819766195104106,
27
+ "spearman": 0.8432397778118456
28
+ }
29
+ }
30
+ }
31
+ }
results/summary.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Classification": {
3
+ "amazon_counterfactual_classification": {
4
+ "macro_f1": 0.8212903958100242
5
+ },
6
+ "amazon_review_classification": {
7
+ "macro_f1": 0.6106205588763483
8
+ },
9
+ "massive_intent_classification": {
10
+ "macro_f1": 0.821659588084153
11
+ },
12
+ "massive_scenario_classification": {
13
+ "macro_f1": 0.8927605477819499
14
+ }
15
+ },
16
+ "Reranking": {
17
+ "esci": {
18
+ "ndcg@10": 0.9343186677190654
19
+ }
20
+ },
21
+ "Retrieval": {
22
+ "jagovfaqs_22k": {
23
+ "ndcg@10": 0.7787754194132134
24
+ },
25
+ "jaqket": {
26
+ "ndcg@10": 0.7038903636852758
27
+ },
28
+ "mrtydi": {
29
+ "ndcg@10": 0.4906924953691417
30
+ },
31
+ "nlp_journal_abs_intro": {
32
+ "ndcg@10": 0.9935436297129833
33
+ },
34
+ "nlp_journal_title_abs": {
35
+ "ndcg@10": 0.9800724651571329
36
+ },
37
+ "nlp_journal_title_intro": {
38
+ "ndcg@10": 0.9662644169750596
39
+ }
40
+ },
41
+ "STS": {
42
+ "jsick": {
43
+ "spearman": 0.7812165639898206
44
+ },
45
+ "jsts": {
46
+ "spearman": 0.8432397778118456
47
+ }
48
+ },
49
+ "Clustering": {
50
+ "livedoor_news": {
51
+ "v_measure_score": 0.6198770016343527
52
+ },
53
+ "mewsc16": {
54
+ "v_measure_score": 0.4938330752654621
55
+ }
56
+ },
57
+ "PairClassification": {
58
+ "paws_x_ja": {
59
+ "binary_f1": 0.6259758694109298
60
+ }
61
+ }
62
+ }