File size: 4,911 Bytes
f7f35b4
 
 
 
 
 
6190323
f7f35b4
 
 
 
 
 
 
 
 
 
 
6190323
f7f35b4
6190323
f7f35b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
library_name: peft
license: llama3
base_model: aaditya/Llama3-OpenBioLLM-8B
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: Llama3-OpenBioLLM-8B-PsyCourse-fold8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama3-OpenBioLLM-8B-PsyCourse-fold8

This model is a fine-tuned version of [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) on the course-train-fold8 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0360

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5651        | 0.0758 | 50   | 0.3454          |
| 0.159         | 0.1516 | 100  | 0.0916          |
| 0.0775        | 0.2275 | 150  | 0.0660          |
| 0.0565        | 0.3033 | 200  | 0.0587          |
| 0.0563        | 0.3791 | 250  | 0.0594          |
| 0.0631        | 0.4549 | 300  | 0.0575          |
| 0.0677        | 0.5308 | 350  | 0.0503          |
| 0.0366        | 0.6066 | 400  | 0.0471          |
| 0.0397        | 0.6824 | 450  | 0.0430          |
| 0.0383        | 0.7582 | 500  | 0.0479          |
| 0.0508        | 0.8340 | 550  | 0.0427          |
| 0.0346        | 0.9099 | 600  | 0.0434          |
| 0.0513        | 0.9857 | 650  | 0.0444          |
| 0.0339        | 1.0615 | 700  | 0.0417          |
| 0.0296        | 1.1373 | 750  | 0.0442          |
| 0.0288        | 1.2132 | 800  | 0.0397          |
| 0.0299        | 1.2890 | 850  | 0.0421          |
| 0.0293        | 1.3648 | 900  | 0.0401          |
| 0.0278        | 1.4406 | 950  | 0.0393          |
| 0.0283        | 1.5164 | 1000 | 0.0405          |
| 0.0493        | 1.5923 | 1050 | 0.0393          |
| 0.0287        | 1.6681 | 1100 | 0.0392          |
| 0.0383        | 1.7439 | 1150 | 0.0379          |
| 0.0312        | 1.8197 | 1200 | 0.0378          |
| 0.0353        | 1.8956 | 1250 | 0.0379          |
| 0.0242        | 1.9714 | 1300 | 0.0360          |
| 0.0176        | 2.0472 | 1350 | 0.0413          |
| 0.0132        | 2.1230 | 1400 | 0.0386          |
| 0.0224        | 2.1988 | 1450 | 0.0413          |
| 0.0198        | 2.2747 | 1500 | 0.0423          |
| 0.0191        | 2.3505 | 1550 | 0.0429          |
| 0.017         | 2.4263 | 1600 | 0.0412          |
| 0.0194        | 2.5021 | 1650 | 0.0465          |
| 0.0178        | 2.5780 | 1700 | 0.0439          |
| 0.0238        | 2.6538 | 1750 | 0.0411          |
| 0.0181        | 2.7296 | 1800 | 0.0414          |
| 0.0128        | 2.8054 | 1850 | 0.0439          |
| 0.0287        | 2.8812 | 1900 | 0.0410          |
| 0.0202        | 2.9571 | 1950 | 0.0418          |
| 0.011         | 3.0329 | 2000 | 0.0430          |
| 0.005         | 3.1087 | 2050 | 0.0487          |
| 0.0045        | 3.1845 | 2100 | 0.0502          |
| 0.0072        | 3.2604 | 2150 | 0.0496          |
| 0.0098        | 3.3362 | 2200 | 0.0482          |
| 0.0089        | 3.4120 | 2250 | 0.0492          |
| 0.0072        | 3.4878 | 2300 | 0.0486          |
| 0.0116        | 3.5636 | 2350 | 0.0496          |
| 0.0094        | 3.6395 | 2400 | 0.0489          |
| 0.0055        | 3.7153 | 2450 | 0.0501          |
| 0.0095        | 3.7911 | 2500 | 0.0529          |
| 0.0113        | 3.8669 | 2550 | 0.0517          |
| 0.0042        | 3.9428 | 2600 | 0.0518          |
| 0.0021        | 4.0186 | 2650 | 0.0539          |
| 0.0027        | 4.0944 | 2700 | 0.0573          |
| 0.0017        | 4.1702 | 2750 | 0.0590          |
| 0.0033        | 4.2460 | 2800 | 0.0603          |
| 0.003         | 4.3219 | 2850 | 0.0618          |
| 0.0013        | 4.3977 | 2900 | 0.0623          |
| 0.003         | 4.4735 | 2950 | 0.0625          |
| 0.0036        | 4.5493 | 3000 | 0.0631          |
| 0.0017        | 4.6252 | 3050 | 0.0634          |
| 0.0023        | 4.7010 | 3100 | 0.0635          |
| 0.0028        | 4.7768 | 3150 | 0.0635          |
| 0.0028        | 4.8526 | 3200 | 0.0637          |
| 0.0021        | 4.9284 | 3250 | 0.0636          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3