File size: 4,911 Bytes
7538012 69d9b51 7538012 69d9b51 7538012 69d9b51 7538012 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
library_name: peft
license: llama3
base_model: aaditya/Llama3-OpenBioLLM-8B
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: Llama3-OpenBioLLM-8B-PsyCourse-fold7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama3-OpenBioLLM-8B-PsyCourse-fold7
This model is a fine-tuned version of [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) on the course-train-fold7 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0343
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5143 | 0.0764 | 50 | 0.3069 |
| 0.1115 | 0.1528 | 100 | 0.0800 |
| 0.0781 | 0.2292 | 150 | 0.0636 |
| 0.0677 | 0.3056 | 200 | 0.0595 |
| 0.0609 | 0.3820 | 250 | 0.0500 |
| 0.0442 | 0.4584 | 300 | 0.0519 |
| 0.0605 | 0.5348 | 350 | 0.0530 |
| 0.0415 | 0.6112 | 400 | 0.0427 |
| 0.0616 | 0.6875 | 450 | 0.0430 |
| 0.0412 | 0.7639 | 500 | 0.0389 |
| 0.0306 | 0.8403 | 550 | 0.0385 |
| 0.0579 | 0.9167 | 600 | 0.0378 |
| 0.0625 | 0.9931 | 650 | 0.0424 |
| 0.0363 | 1.0695 | 700 | 0.0368 |
| 0.024 | 1.1459 | 750 | 0.0377 |
| 0.0331 | 1.2223 | 800 | 0.0374 |
| 0.0368 | 1.2987 | 850 | 0.0383 |
| 0.039 | 1.3751 | 900 | 0.0359 |
| 0.0428 | 1.4515 | 950 | 0.0387 |
| 0.0285 | 1.5279 | 1000 | 0.0350 |
| 0.0292 | 1.6043 | 1050 | 0.0368 |
| 0.0317 | 1.6807 | 1100 | 0.0365 |
| 0.0506 | 1.7571 | 1150 | 0.0349 |
| 0.0329 | 1.8335 | 1200 | 0.0353 |
| 0.0352 | 1.9099 | 1250 | 0.0377 |
| 0.0289 | 1.9862 | 1300 | 0.0365 |
| 0.0202 | 2.0626 | 1350 | 0.0356 |
| 0.0174 | 2.1390 | 1400 | 0.0357 |
| 0.0134 | 2.2154 | 1450 | 0.0395 |
| 0.02 | 2.2918 | 1500 | 0.0361 |
| 0.0189 | 2.3682 | 1550 | 0.0374 |
| 0.0162 | 2.4446 | 1600 | 0.0348 |
| 0.0252 | 2.5210 | 1650 | 0.0371 |
| 0.0175 | 2.5974 | 1700 | 0.0366 |
| 0.0222 | 2.6738 | 1750 | 0.0346 |
| 0.0274 | 2.7502 | 1800 | 0.0347 |
| 0.0215 | 2.8266 | 1850 | 0.0362 |
| 0.0201 | 2.9030 | 1900 | 0.0378 |
| 0.016 | 2.9794 | 1950 | 0.0343 |
| 0.009 | 3.0558 | 2000 | 0.0372 |
| 0.0106 | 3.1322 | 2050 | 0.0389 |
| 0.0061 | 3.2086 | 2100 | 0.0432 |
| 0.0075 | 3.2850 | 2150 | 0.0434 |
| 0.0089 | 3.3613 | 2200 | 0.0434 |
| 0.0102 | 3.4377 | 2250 | 0.0462 |
| 0.0083 | 3.5141 | 2300 | 0.0465 |
| 0.0131 | 3.5905 | 2350 | 0.0443 |
| 0.0054 | 3.6669 | 2400 | 0.0424 |
| 0.0038 | 3.7433 | 2450 | 0.0428 |
| 0.0074 | 3.8197 | 2500 | 0.0429 |
| 0.0056 | 3.8961 | 2550 | 0.0426 |
| 0.007 | 3.9725 | 2600 | 0.0428 |
| 0.0034 | 4.0489 | 2650 | 0.0434 |
| 0.0051 | 4.1253 | 2700 | 0.0460 |
| 0.0043 | 4.2017 | 2750 | 0.0464 |
| 0.0023 | 4.2781 | 2800 | 0.0472 |
| 0.0035 | 4.3545 | 2850 | 0.0477 |
| 0.0021 | 4.4309 | 2900 | 0.0488 |
| 0.0021 | 4.5073 | 2950 | 0.0497 |
| 0.0024 | 4.5837 | 3000 | 0.0501 |
| 0.0013 | 4.6600 | 3050 | 0.0505 |
| 0.0031 | 4.7364 | 3100 | 0.0511 |
| 0.0031 | 4.8128 | 3150 | 0.0511 |
| 0.0023 | 4.8892 | 3200 | 0.0512 |
| 0.0023 | 4.9656 | 3250 | 0.0511 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3 |