# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Converts BERT NeMo0.* checkpoints to NeMo1.0 format. """ from argparse import ArgumentParser import torch parser = ArgumentParser() parser.add_argument("--bert_encoder", required=True, help="path to BERT encoder, e.g. /../BERT-STEP-2285714.pt") parser.add_argument( "--bert_token_classifier", required=True, help="path to BERT token classifier, e.g. /../BertTokenClassifier-STEP-2285714.pt", ) parser.add_argument( "--bert_sequence_classifier", required=False, default=None, help="path to BERT sequence classifier, e.g /../SequenceClassifier-STEP-2285714.pt", ) parser.add_argument( "--output_path", required=False, default="converted_model.pt", help="output path to newly converted model" ) args = parser.parse_args() bert_in = torch.load(args.bert_encoder) tok_in = torch.load(args.bert_token_classifier) if args.bert_sequence_classifier: seq_in = torch.load(args.bert_sequence_classifier) new_dict = {} new_model = {"state_dict": new_dict} for k in bert_in: new_name = k.replace("bert.", "bert_model.") new_dict[new_name] = bert_in[k] for k in tok_in: new_name = "mlm_classifier." + k new_dict[new_name] = tok_in[k] if args.bert_sequence_classifier: for k in seq_in: new_name = "nsp_classifier." + k new_dict[new_name] = seq_in[k] torch.save(new_model, args.output_path)