# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch def get_forward_hook(name, trainer, rank, logger, dump_to_file=False): """ A forward hook to dump all of the module input and output norms. It is called at every time after forward() has computed an output. Only float type input/output tensor norms are computed. For more details about the forward hook, check https://pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_hook.html Args: name: tensor name trainer: PTL trainer rank: worker rank logger: PTL log function dump_to_file: wether dump the csv file to the disk """ if dump_to_file: os.makedirs('debug_info', exist_ok=True) fp = open(f'debug_info/forward_{name}_rank{rank}.txt', 'w') header = False def forward_hook(module, inputs, outputs): nonlocal header nonlocal fp if trainer.training: values = [] headers = [] for n, i in enumerate(inputs): if isinstance(i, torch.Tensor) and ( i.dtype == torch.float or i.dtype == torch.half or i.dtype == torch.bfloat16 ): if not header: headers.append('input') input_norm = i.data.norm() values.append(f'{input_norm}') logger(f'debug_info_forward/{name}_rank{rank}_input{n}', input_norm) if isinstance(outputs, tuple): for n, i in enumerate(outputs): if isinstance(i, torch.Tensor) and ( i.dtype == torch.float or i.dtype == torch.half or i.dtype == torch.bfloat16 ): if not header: headers.append('output') output_norm = i.data.norm() values.append(f'{output_norm}') logger(f'debug_info_forward/{name}_rank{rank}_output{n}', output_norm) else: headers.append('output') values.append(f'{outputs.data.norm()}') values.append(f'{trainer.global_step}') if not header: headers.append('step') fp.write(','.join(headers) + '\n') header = True fp.write(','.join(values) + '\n') fp.flush() return forward_hook def get_backward_hook(name, trainer, rank, logger, dump_to_file=False): """ A backward hook to dump all of the module input and output grad norms. The hook will be called every time the gradients with respect to module inputs are computed. Only float type input/output grad tensor norms are computed. For more details about the backward hook, check https://pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_full_backward_hook.html Args: name: tensor name trainer: PTL trainer rank: worker rank logger: PTL log function dump_to_file: wether dump the csv file to the disk """ if dump_to_file: os.makedirs('debug_info', exist_ok=True) fp = open(f'debug_info/backward_{name}_rank{rank}.txt', 'w') header = False def backward_hook(module, inputs, outputs): nonlocal header nonlocal fp if trainer.training: values = [] headers = [] for n, i in enumerate(inputs): if isinstance(i, torch.Tensor) and ( i.dtype == torch.float or i.dtype == torch.half or i.dtype == torch.bfloat16 ): if not header: headers.append('input') input_norm = i.data.norm() values.append(f'{input_norm}') logger(f'debug_info_backward/{name}_rank{rank}_input{n}', input_norm) if isinstance(outputs, tuple): for n, i in enumerate(outputs): if isinstance(i, torch.Tensor) and ( i.dtype == torch.float or i.dtype == torch.half or i.dtype == torch.bfloat16 ): if not header: headers.append('output') output_norm = i.data.norm() values.append(f'{output_norm}') logger(f'debug_info_backward/{name}_rank{rank}_output{n}', output_norm) else: headers.append('output') values.append(f'{outputs.data.norm()}') values.append(f'{trainer.global_step}') if not header: headers.append('step') fp.write(','.join(headers) + '\n') header = True fp.write(','.join(values) + '\n') fp.flush() return backward_hook def get_tensor_hook(module, name, trainer, rank, logger, dump_to_file=False): """ A tensor hook to dump all of the tensor weight norms and grad norms at the end of each of the backward steps. For more details about the tensor hook, check https://pytorch.org/docs/stable/generated/torch.Tensor.register_hook.html Args: module: the model module name: tensor name trainer: PTL trainer rank: worker rank logger: PTL log function dump_to_file: wether dump the csv file to the disk """ if dump_to_file: os.makedirs('debug_info', exist_ok=True) fp = open(f'debug_info/tensor_{name}_rank{rank}.csv', 'w') header = False def tensor_hook(grad): nonlocal header nonlocal fp values = [] headers = [] weight = module.get_parameter(name) weight_norm = weight.data.norm() grad_norm = grad.data.norm() logger(f'debug_info_tensors/{name}_rank{rank}_grad_norm', grad_norm) logger(f'debug_info_tensors/{name}_rank{rank}_weight_norm', weight_norm) values.append(f'{weight_norm}') values.append(f'{grad_norm}') values.append(f'{trainer.global_step}') if dump_to_file: if not header: headers.append('weight') headers.append('grad') headers.append('step') fp.write(','.join(headers) + '\n') header = True fp.write(','.join(values) + '\n') fp.flush() return grad return tensor_hook def register_debug_hooks(module, trainer, logger, dump_to_file=False): """ Register debug hooks. It can 1. track the module forward step input/ouput norm 2. track the module backward step input/output grad norm 3. track the parameter weight norm and grad norm. """ # default rank 0 rank = 0 if torch.distributed.is_initialized(): rank = torch.distributed.get_rank() for name, tensor in module.named_parameters(): if name != '': tensor.register_hook(get_tensor_hook(module, name, trainer, rank, logger, dump_to_file)) for name, layer in module.named_modules(): if name != '': layer.register_forward_hook(get_forward_hook(name, trainer, rank, logger, dump_to_file)) layer.register_full_backward_hook(get_backward_hook(name, trainer, rank, logger, dump_to_file))