# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager import torch from nemo.utils import logging try: import amp_C from apex.multi_tensor_apply import multi_tensor_applier from apex.transformer.parallel_state import get_data_parallel_group, get_data_parallel_world_size from apex.transformer.tensor_parallel import copy_tensor_model_parallel_attributes HAVE_APEX = True except (ImportError, ModuleNotFoundError): HAVE_APEX = False def _zero_grad_group_helper(group, set_to_none): """Zero out the gradient for a group of parameters. Note: copied from torch.optim.optimizer.""" for param in group: if param.grad is not None: if set_to_none: param.grad = None else: if param.grad.grad_fn is not None: param.grad.detach_() else: param.grad.requires_grad_(False) param.grad.zero_() def _multi_tensor_copy_this_to_that(this, that, overflow_buf): """Use multi-tensor-applier to copy values from one list to another. We don't have a blfoat16 implementation so for now if the overflow_buf is not provided, we default back to simple loop copy to be compatible with bfloat16.""" if overflow_buf: # Scaling with factor `1.0` is equivalent to copy. multi_tensor_applier(amp_C.multi_tensor_scale, overflow_buf, [this, that], 1.0) else: # FIXME: use multi-tensor applier for bf16 for this_, that_ in zip(this, that): that_.copy_(this_) class GradBucket(object): """ Persistent buffer for main gradients that remains allocated between training iterations """ def __init__(self, numel, chunk_size_mb): if not HAVE_APEX: raise ImportError( "Apex was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) self.numel = numel self.data = torch.zeros(self.numel, dtype=torch.float, device=torch.cuda.current_device(), requires_grad=False) self.chunk_size_mb = chunk_size_mb if self.chunk_size_mb > 0: chunk_size_bytes = chunk_size_mb * 1024 * 1024 self.chunk_size_numel = chunk_size_bytes // 4 self.num_chunks = self.numel // self.chunk_size_numel self.numel_per_chunk = [self.chunk_size_numel] * self.num_chunks if self.numel % self.chunk_size_numel != 0: self.num_chunks += 1 self.numel_per_chunk.append(self.numel % self.chunk_size_numel) self.start_index_per_chunk = torch.cumsum(torch.tensor([0] + self.numel_per_chunk[:-1]), dim=0) self.current_chunk = 0 self.computed_numel_per_chunk = [0] * self.num_chunks def zero(self): """Reset the buffer to zero.""" self.data.zero_() def allreduce_buffer(self): """Synchronous buffer data allreduce """ self.data.div_(get_data_parallel_world_size()) torch.distributed.all_reduce(self.data, group=get_data_parallel_group()) def get(self, shape, start_index): """Return a tensor with the input `shape` as a view into the 1-D data starting at `start_index`.""" end_index = start_index + shape.numel() assert end_index <= self.numel, 'requested tensor is out of the buffer range.' buffer_tensor = self.data[start_index:end_index] buffer_tensor = buffer_tensor.view(shape) grad_chunk_info = None if self.chunk_size_mb > 0: grad_chunk_info = {} chunk = start_index // self.chunk_size_numel chunk_start_index = self.start_index_per_chunk[chunk] chunk_end_index = chunk_start_index + self.numel_per_chunk[chunk] grad_chunk_info[chunk] = min(chunk_end_index, end_index) - start_index while chunk_end_index < end_index: chunk += 1 chunk_start_index = self.start_index_per_chunk[chunk] chunk_end_index = chunk_start_index + self.numel_per_chunk[chunk] grad_chunk_info[chunk] = min(chunk_end_index, end_index) - chunk_start_index return buffer_tensor, grad_chunk_info def update_chunk_info(self, grad_chunk_info): for chunk in grad_chunk_info.keys(): self.computed_numel_per_chunk[chunk] += grad_chunk_info[chunk] def get_allreduce_tensor(self): if self.computed_numel_per_chunk[self.current_chunk] == self.numel_per_chunk[self.current_chunk]: chunk_start_index = self.start_index_per_chunk[self.current_chunk] chunk_end_index = chunk_start_index + self.numel_per_chunk[self.current_chunk] allreduce_tensor = self.data[chunk_start_index:chunk_end_index] self.computed_numel_per_chunk[self.current_chunk] = 0 self.current_chunk += 1 if self.current_chunk == self.num_chunks: self.current_chunk = 0 return allreduce_tensor return None class MainParamsOptimizerWrapper(torch.optim.Optimizer): """ Float16 optimizer wrapper for half precision (fp16 and bf16) data types. This optimizer wrapper holds main parameters and gradients in fp32 to support stable convergence. Arguments: optimizer: base optimizer such as Adam or SGD. fp32_grad_accum: to enable the use of fp32 in gradient accumulation and allreduce. contiguous_grad_bucket: to enable allocating the master gradients in the contiguous memory space to reduce memory fragmentation. async_grad_allreduce: enable asynchronous gradient allreduce that is executed along with the training step backprop. """ def __init__( self, optimizer, fp32_grad_accum=False, contiguous_grad_bucket=False, async_grad_allreduce=False, grad_div_ar_fusion=True, grad_allreduce_chunk_size_mb=0, ): if not HAVE_APEX: raise ImportError( "Apex was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) self.optimizer = optimizer assert self.optimizer, 'no optimizer is provided.' if contiguous_grad_bucket: assert fp32_grad_accum, 'contiguous gradient buffer assumes using fp32 grad.' if async_grad_allreduce: assert fp32_grad_accum, ( 'async allreduce applies to master gradients only, ' 'which is supposed to be accumulated after grad op.' ) assert contiguous_grad_bucket, ( 'currently async_grad_allreduce is supported only ' 'with contiguous_grad_bucket.' ) self._fp32_grad_accum = fp32_grad_accum self._contiguous_grad_bucket = contiguous_grad_bucket # used with tensor parallel only (no pipeline parallelism) # be careful, weight update cannot start until all async grad AR works are done self._async_grad_allreduce = async_grad_allreduce and get_data_parallel_world_size() > 1 self._grad_divisor = 1 / get_data_parallel_world_size() if self._async_grad_allreduce: # use @no_sync to disable backward grad sync during gradient accumulation self._require_backward_grad_sync = True self._grad_div_ar_fusion = grad_div_ar_fusion self._grad_allreduce_chunk_size_mb = grad_allreduce_chunk_size_mb else: self._require_backward_grad_sync = False self._grad_div_ar_fusion = False self._grad_allreduce_chunk_size_mb = 0 # Dummy tensor needed for apex multi-apply tensor. self._dummy_overflow_buf = None # Create persistent buffers for main gradients in contiguous memory space # - Chunked element-wise and allreduce ops without creating a temporary buffer for merged operation # - Low memory fragmentation self._main_grad_buffers = None if self._contiguous_grad_bucket: self._main_grad_buffers = {} # get the size of buffers num_elements = {} for i, param_group in enumerate(self.optimizer.param_groups): for param in param_group['params']: if param.requires_grad: num_elements[i] = num_elements.get(i, 0) + param.data.nelement() # Allocate gradient memory buffers for each data type if any(param.requires_grad for param in param_group['params']): self._main_grad_buffers[i] = GradBucket(num_elements[i], self._grad_allreduce_chunk_size_mb) # Three groups of parameters: self.float16_groups = [] # original float16 parameters self.fp32_from_float16_groups = [] # fp32 copy of float16 parameters self.fp32_from_fp32_groups = [] # original fp32 parameters # gradient function hooks if self._fp32_grad_accum: self.grad_accs = [] # For all the groups in the original optimizer: for i, param_group in enumerate(self.optimizer.param_groups): float16_params_this_group = [] fp32_params_this_group = [] fp32_from_float16_params_this_group = [] # For all the parameters in this group: for j, param in enumerate(param_group['params']): if param.requires_grad: # float16 params: if param.type() in ['torch.cuda.HalfTensor', 'torch.cuda.BFloat16Tensor']: float16_params_this_group.append(param) # Allocate the main parameter main_param = param.detach().clone().float() # Copy tensor model parallel attributes. copy_tensor_model_parallel_attributes(main_param, param) if hasattr(param, 'shared'): main_param.shared = param.shared # Assign the grad buffer offset to main parameters if self._contiguous_grad_bucket: num_elements[i] -= param.data.nelement() main_param.grad, grad_chunk_info = self._main_grad_buffers[i].get( param.data.shape, num_elements[i] ) # Add a pointer to main_grad in model param for first-last stage embedding param reduction param.main_grad = main_param.grad # Replace the optimizer params with the new fp32 copy. param_group['params'][j] = main_param fp32_from_float16_params_this_group.append(main_param) # Reset existing state dict key to the new main param. if param in self.optimizer.state: self.optimizer.state[main_param] = self.optimizer.state.pop(param) # fp32 params. elif param.type() == 'torch.cuda.FloatTensor': fp32_params_this_group.append(param) param_group['params'][j] = param else: raise TypeError( 'Wrapped parameters must be one of ' 'torch.cuda.FloatTensor, ' 'torch.cuda.HalfTensor, or ' 'torch.cuda.BFloat16Tensor. ' 'Received {}'.format(param.type()) ) # Add gradient accumulation hook for fp32 grad accumulation if self._fp32_grad_accum and param.requires_grad: # Expand so we get access to grad_fn param_tmp = param.expand_as(param) # Get the gradient accumulator function. grad_acc = param_tmp.grad_fn.next_functions[0][0] grad_acc.register_hook(self._make_param_hook(param, main_param, i, grad_chunk_info)) self.grad_accs.append(grad_acc) self.float16_groups.append(float16_params_this_group) self.fp32_from_float16_groups.append(fp32_from_float16_params_this_group) self.fp32_from_fp32_groups.append(fp32_params_this_group) # Leverage state_dict() and load_state_dict() to # recast preexisting per-param state tensors self.optimizer.load_state_dict(self.optimizer.state_dict()) def _make_param_hook(self, param, main_param, i, grad_chunk_info): """Create the grad accumulation and all-reduce hook for backprop.""" # Hook used for back-prop. def param_hook(*unused): # Accumulates gradients on main gradients if param.grad is not None: if main_param.grad is None: main_param.grad = param.grad.float() else: main_param.grad.add_(param.grad.data) # Deallocate grad memory. param.grad = None # Asynchronous gradients allreduce accross data_parallel ranks if self._require_backward_grad_sync: if self._grad_allreduce_chunk_size_mb > 0: self._main_grad_buffers[i].update_chunk_info(grad_chunk_info) while True: allreduce_tensor = self._main_grad_buffers[i].get_allreduce_tensor() if allreduce_tensor is None: break if self._grad_div_ar_fusion: torch.distributed.all_reduce( allreduce_tensor, group=get_data_parallel_group(), async_op=True, op=torch.distributed._make_nccl_premul_sum(self._grad_divisor), ) else: allreduce_tensor.div_(get_data_parallel_world_size()) torch.distributed.all_reduce( allreduce_tensor, group=get_data_parallel_group(), async_op=True, ) else: if self._grad_div_ar_fusion: torch.distributed.all_reduce( main_param.grad, group=get_data_parallel_group(), async_op=True, op=torch.distributed._make_nccl_premul_sum(self._grad_divisor), ) else: main_param.grad.div_(get_data_parallel_world_size()) torch.distributed.all_reduce( main_param.grad, group=get_data_parallel_group(), async_op=True, ) return param_hook def zero_grad(self, set_to_none=True): """We only need to zero the model related parameters, i.e., float16_groups & fp32_from_fp32_groups. We additionally zero fp32_from_float16_groups as a memory optimization to reduce fragmentation; in the case of set_to_none==True, the space used by this field can be safely deallocated at this point.""" for group in self.float16_groups: _zero_grad_group_helper(group, set_to_none) if self._contiguous_grad_bucket: for i in self._main_grad_buffers: self._main_grad_buffers[i].zero() else: for group in self.fp32_from_float16_groups: _zero_grad_group_helper(group, set_to_none) for group in self.fp32_from_fp32_groups: _zero_grad_group_helper(group, set_to_none) def copy_model_grads_to_main_grads(self): # This only needs to be done for the float16 group. for model_group, main_group in zip(self.float16_groups, self.fp32_from_float16_groups): for model_param, main_param in zip(model_group, main_group): if model_param.grad is not None: main_param.grad = model_param.grad.float() # Safe to deallocate model's grad after copying. # (If using contiguous buffers, main_grad's memory should # persist and therefore should not be deallocated.) model_param.grad = None def _get_model_and_main_params_data_float16(self): model_data = [] main_data = [] half_dtype = None for model_group, main_group in zip(self.float16_groups, self.fp32_from_float16_groups): for model_param, main_param in zip(model_group, main_group): if half_dtype is None: half_dtype = model_param.data.dtype model_data.append(model_param.data) main_data.append(main_param.data) return model_data, main_data, half_dtype def _set_overflow_buffer(self, half_dtype): if half_dtype == torch.float16: if self._dummy_overflow_buf is None: self._dummy_overflow_buf = torch.cuda.IntTensor([0]) else: self._dummy_overflow_buf.fill_(0) def _copy_main_params_to_model_params(self): # Only needed for the float16 params. model_data, main_data, half_dtype = self._get_model_and_main_params_data_float16() self._set_overflow_buffer(half_dtype) _multi_tensor_copy_this_to_that(this=main_data, that=model_data, overflow_buf=self._dummy_overflow_buf) def _copy_model_params_to_main_params(self): # Only needed for the float16 params. model_data, main_data, half_dtype = self._get_model_and_main_params_data_float16() self._set_overflow_buffer(half_dtype) _multi_tensor_copy_this_to_that(this=model_data, that=main_data, overflow_buf=self._dummy_overflow_buf) def reload_model_params(self): self._copy_model_params_to_main_params() @torch.no_grad() def step(self, **kwargs): # while async grad allreduce is enabled, bprop will keep moving forward without waiting for # the finish of async grad AR works. Hence, to guarantee the correctness of grads reduction, # we cannot start weight update until all async grad AR works are done. if self._async_grad_allreduce: torch.cuda.synchronize() # Step the optimizer. self.optimizer.step(closure=None, **kwargs) # Update params from main params. with torch.no_grad(): self._copy_main_params_to_model_params() # Successful update. return True def state_dict(self): state_dict = {} state_dict['optimizer'] = self.optimizer.state_dict() state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups return state_dict def load_state_dict(self, state_dict): # Optimizer. optimizer_key = 'optimizer' if optimizer_key not in state_dict: optimizer_key = 'optimizer_state_dict' logging.info('***WARNING*** loading optimizer from ' 'an old checkpoint ...') self.optimizer.load_state_dict(state_dict[optimizer_key]) # Copy data for the main params. fp32_from_float16_params_key = 'fp32_from_fp16_params' if fp32_from_float16_params_key not in state_dict: fp32_from_float16_params_key = 'fp32_from_fp16' for current_group, saved_group in zip(self.fp32_from_float16_groups, state_dict[fp32_from_float16_params_key]): for current_param, saved_param in zip(current_group, saved_group): current_param.data.copy_(saved_param.data) def allreduce_main_grads(self): for i in self._main_grad_buffers: self._main_grad_buffers[i].allreduce_buffer() @contextmanager def no_sync(self): """ A context manager to disable gradient synchronizations across data-parallel ranks.""" old_require_backward_grad_sync = self._require_backward_grad_sync self._require_backward_grad_sync = False try: yield finally: self._require_backward_grad_sync = old_require_backward_grad_sync @property def async_master_grads_allreudce(self): return self._async_grad_allreduce @property def fp32_grad_accumulation(self): return self._fp32_grad_accum def get_parameters(self): params = [] for param_group in self.optimizer.param_groups: for param in param_group['params']: params.append(param) return params # Promote state so it can be retrieved or set via # "optimizer_instance.state" def _get_state(self): if hasattr(self, 'optimizer'): return self.optimizer.state else: return [] def _set_state(self, value): self.optimizer.state = value state = property(_get_state, _set_state) # Promote param_groups so it can be retrieved or set via # "optimizer_instance.param_groups" # (for example, to adjust the learning rate) def _get_param_groups(self): if hasattr(self, 'optimizer'): return self.optimizer.param_groups else: return [] def _set_param_groups(self, value): self.optimizer.param_groups = value param_groups = property(_get_param_groups, _set_param_groups) # Promote defaults so it can be retrieved or set via # "optimizer_instance.defaults def _get_defaults(self): if hasattr(self, 'optimizer'): return self.optimizer.defaults else: return [] def _set_defaults(self, value): self.optimizer.defaults = value defaults = property(_get_defaults, _set_defaults)