# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytorch_lightning as pl import torch from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models.g2p_heteronym_classification import HeteronymClassificationModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager """ This script runs training and evaluation of HeteronymClassificationModel To prepare dataset, see NeMo/scripts/dataset_processing/g2p/export_wikihomograph_data_to_manifest.py To run training: python g2p_heteronym_classification_train_and_evaluate.py \ train_manifest=" \ validation_manifest=" \ model.wordids="" \ do_training=True To run training and testing (once the training is complete): python g2p_heteronym_classification_train_and_evaluate.py \ train_manifest=" \ validation_manifest=" \ model.test_ds.dataset.manifest=" \ model.wordids="" \ do_training=True \ do_testing=True To run testing: python g2p_heteronym_classification_train_and_evaluate.py \ do_training=False \ do_testing=True \ model.test_ds.dataset.manifest=" \ pretrained_model= See https://github.com/google-research-datasets/WikipediaHomographData/blob/master/data/wordids.tsv for wordids file format example See https://github.com/NVIDIA/NeMo/blob/main/scripts/dataset_processing/g2p/export_wikihomograph_data_to_manifest.py on how to convert WikiHomograph data for HeteronymClassificationModel training/evaluation """ @hydra_runner(config_path="conf", config_name="g2p_heteronym_classification.yaml") def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) model = None if cfg.do_training: model = HeteronymClassificationModel(cfg=cfg.model, trainer=trainer) lr_logger = pl.callbacks.LearningRateMonitor() epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([lr_logger, epoch_time_logger]) trainer.fit(model) logging.info("Training is complete") if cfg.do_testing: logging.info( 'During evaluation/testing, it is currently advisable to construct a new Trainer with single GPU and \ no DDP to obtain accurate results' ) # setup GPU if torch.cuda.is_available(): device = [0] # use 0th CUDA device accelerator = 'gpu' else: device = 1 accelerator = 'cpu' map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu') trainer = pl.Trainer(devices=device, accelerator=accelerator, logger=False, enable_checkpointing=False) if model is None: if os.path.exists(cfg.pretrained_model): # restore model from .nemo file path model = HeteronymClassificationModel.restore_from(restore_path=cfg.pretrained_model) elif cfg.pretrained_model in HeteronymClassificationModel.get_available_model_names(): # restore model by name model = HeteronymClassificationModel.from_pretrained(cfg.pretrained_model, map_location=map_location) else: raise ValueError( f'Provide path to the pre-trained .nemo checkpoint or choose from {HeteronymClassificationModel.list_available_models()}' ) if hasattr(cfg.model, "test_ds") and cfg.model.test_ds.dataset.manifest is not None: model.setup_test_data(cfg.model.test_ds) trainer.test(model) else: logging.info("test_ds not found, skipping evaluation") if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter