# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This is a helper script to extract speaker embeddings based on manifest file Usage: python extract_speaker_embeddings.py --manifest=/path/to/manifest/file' --model_path='/path/to/.nemo/file'(optional) --embedding_dir='/path/to/embedding/directory' Args: --manifest: path to manifest file containing audio_file paths for which embeddings need to be extracted --model_path(optional): path to .nemo speaker verification model file to extract embeddings, if not passed SpeakerNet-M model would be downloaded from NGC and used to extract embeddings --embeddings_dir(optional): path to directory where embeddings need to stored default:'./' """ import json import os import pickle as pkl from argparse import ArgumentParser import numpy as np import torch from nemo.collections.asr.models.label_models import EncDecSpeakerLabelModel from nemo.collections.asr.parts.utils.speaker_utils import embedding_normalize from nemo.utils import logging def get_embeddings(speaker_model, manifest_file, batch_size=1, embedding_dir='./', device='cuda'): """ save embeddings to pickle file Args: speaker_model: NeMo model manifest_file: path to the manifest file containing the audio file path from which the embeddings should be extracted batch_size: batch_size for inference embedding_dir: path to directory to store embeddings file device: compute device to perform operations """ all_embs, _, _, _ = speaker_model.batch_inference(manifest_file, batch_size=batch_size, device=device) all_embs = np.asarray(all_embs) all_embs = embedding_normalize(all_embs) out_embeddings = {} with open(manifest_file, 'r', encoding='utf-8') as manifest: for i, line in enumerate(manifest.readlines()): line = line.strip() dic = json.loads(line) uniq_name = '@'.join(dic['audio_filepath'].split('/')[-3:]) out_embeddings[uniq_name] = all_embs[i] embedding_dir = os.path.join(embedding_dir, 'embeddings') if not os.path.exists(embedding_dir): os.makedirs(embedding_dir, exist_ok=True) prefix = manifest_file.split('/')[-1].rsplit('.', 1)[-2] name = os.path.join(embedding_dir, prefix) embeddings_file = name + '_embeddings.pkl' pkl.dump(out_embeddings, open(embeddings_file, 'wb')) logging.info("Saved embedding files to {}".format(embedding_dir)) def main(): parser = ArgumentParser() parser.add_argument( "--manifest", type=str, required=True, help="Path to manifest file", ) parser.add_argument( "--model_path", type=str, default='titanet_large', required=False, help="path to .nemo speaker verification model file to extract embeddings, if not passed SpeakerNet-M model would be downloaded from NGC and used to extract embeddings", ) parser.add_argument( "--batch_size", type=int, default=1, required=False, help="batch size", ) parser.add_argument( "--embedding_dir", type=str, default='./', required=False, help="path to directory where embeddings need to stored default:'./'", ) args = parser.parse_args() torch.set_grad_enabled(False) if args.model_path.endswith('.nemo'): logging.info(f"Using local speaker model from {args.model_path}") speaker_model = EncDecSpeakerLabelModel.restore_from(restore_path=args.model_path) elif args.model_path.endswith('.ckpt'): speaker_model = EncDecSpeakerLabelModel.load_from_checkpoint(checkpoint_path=args.model_path) else: speaker_model = EncDecSpeakerLabelModel.from_pretrained(model_name="titanet_large") logging.info(f"using pretrained titanet_large speaker model from NGC") device = 'cuda' if not torch.cuda.is_available(): device = 'cpu' logging.warning("Running model on CPU, for faster performance it is adviced to use atleast one NVIDIA GPUs") get_embeddings( speaker_model, args.manifest, batch_size=args.batch_size, embedding_dir=args.embedding_dir, device=device ) if __name__ == '__main__': main()