# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from omegaconf import OmegaConf from pytorch_lightning import seed_everything from nemo.collections.asr.models import EncDecDiarLabelModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager """ Example training session (single GPU training on telephonic datasets) python ./multiscale_diar_decoder.py --config-path='../conf/neural_diarizer' --config-name='msdd_5scl_15_05_50Povl_256x3x32x2.yaml' \ trainer.devices=1 \ model.base.diarizer.speaker_embeddings.model_path="titanet_large" \ model.train_ds.manifest_filepath="" \ model.validation_ds.manifest_filepath="" \ model.train_ds.emb_dir="" \ model.validation_ds.emb_dir="" \ exp_manager.name='sample_train' \ exp_manager.exp_dir='./msdd_exp' """ seed_everything(42) @hydra_runner(config_path="../conf/neural_diarizer", config_name="msdd_5scl_15_05_50Povl_256x3x32x2.yaml") def main(cfg): logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) msdd_model = EncDecDiarLabelModel(cfg=cfg.model, trainer=trainer) trainer.fit(msdd_model) if __name__ == '__main__': main()