# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytorch_lightning as pl from omegaconf import DictConfig from nemo.collections.nlp.models import TokenClassificationModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager """ This script shows how to perform evaluation and runs inference of a few examples. More details on Token Classification model could be found in tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb *** Setting the configs *** This script uses the `/examples/nlp/token_classification/conf/token_classification_config.yaml` config file by default. You may update the config file from the file directly. The other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. For more details about the config files and different ways of model restoration, see tutorials/00_NeMo_Primer.ipynb *** Model Evaluation *** The script runs two types of evaluation: * model.test() - this eval will use the config setting for evaluation such as model.dataset.max_seq_length * model.evaluate_from_file(): * disregards model.dataset.max_seq_length and evaluates all the tokens, BERT max seq length - 512 tokens after tokenization * creates confusion matrix * saves predictions and labels (if provided) To run the script: python token_classification_evaluate.py \ model.dataset.data_dir= \ pretrained_model=ner_en_bert - a directory that contains test_ds.text_file and test_ds.labels_file (see the config) pretrained_model - pretrained TokenClassification model from list_available_models() or path to a .nemo file, for example: ner_en_bert or your_model.nemo """ @hydra_runner(config_path="conf", config_name="token_classification_config") def main(cfg: DictConfig) -> None: logging.info( 'During evaluation/testing, it is currently advisable to construct a new Trainer with single GPU and \ no DDP to obtain accurate results' ) if not hasattr(cfg.model, 'test_ds'): raise ValueError(f'model.test_ds was not found in the config, skipping evaluation') trainer = pl.Trainer( devices=1, precision=cfg.trainer.precision, logger=False, enable_checkpointing=False, accelerator=cfg.trainer.accelerator, ) exp_dir = exp_manager(trainer, cfg.exp_manager) if not cfg.pretrained_model: raise ValueError( 'To run evaluation and inference script a pre-trained model or .nemo file must be provided.' f'Choose from {TokenClassificationModel.list_available_models()} or "pretrained_model"="your_model.nemo"' ) if os.path.exists(cfg.pretrained_model): model = TokenClassificationModel.restore_from(cfg.pretrained_model) elif cfg.pretrained_model in TokenClassificationModel.get_available_model_names(): model = TokenClassificationModel.from_pretrained(cfg.pretrained_model) else: raise ValueError( f'Provide path to the pre-trained .nemo checkpoint or choose from {TokenClassificationModel.list_available_models()}' ) data_dir = cfg.model.dataset.get('data_dir', None) if data_dir is None: logging.error( 'No dataset directory provided. Skipping evaluation. ' 'To run evaluation on a file, specify path to the directory that contains test_ds.text_file and test_ds.labels_file with "model.dataset.data_dir" argument.' ) elif not os.path.exists(data_dir): logging.error(f'{data_dir} is not found, skipping evaluation on the test set.') else: model.update_data_dir(data_dir=data_dir) model._cfg.dataset = cfg.model.dataset if not hasattr(cfg.model, 'test_ds'): logging.error(f'model.test_ds was not found in the config, skipping evaluation') elif model.prepare_test(trainer): model.setup_test_data(cfg.model.test_ds) trainer.test(model) model.evaluate_from_file( text_file=os.path.join(data_dir, cfg.model.test_ds.text_file), labels_file=os.path.join(data_dir, cfg.model.test_ds.labels_file), output_dir=exp_dir, add_confusion_matrix=True, normalize_confusion_matrix=True, ) else: logging.error('Skipping the evaluation. The trainer is not setup properly.') # run an inference on a few examples queries = ['we bought four shirts from the nvidia gear store in santa clara.', 'Nvidia is a company.'] results = model.add_predictions(queries, output_file='predictions.txt') for query, result in zip(queries, results): logging.info(f'Query : {query}') logging.info(f'Result: {result.strip()}\n') logging.info(f'Results are saved at {exp_dir}') if __name__ == '__main__': main()