# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script runs model parallel text classification evaluation. """ import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models.text_classification import TextClassificationModel from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="text_classification_config") def main(cfg: DictConfig) -> None: logging.info(f'\nConfig Params:\n{OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(strategy=NLPDDPStrategy(), **cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) # TODO: can we drop strict=False model = TextClassificationModel.restore_from(cfg.model.nemo_path, trainer=trainer, strict=False) model.setup_test_data(test_data_config=cfg.model.test_ds) trainer.test(model=model, ckpt_path=None) if __name__ == '__main__': main()