# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from omegaconf.omegaconf import OmegaConf, open_dict from pytorch_lightning import Trainer from pytorch_lightning.plugins.environments import TorchElasticEnvironment from pytorch_lightning.plugins.precision.native_amp import NativeMixedPrecisionPlugin from pytorch_lightning.trainer.connectors.checkpoint_connector import CheckpointConnector from nemo.collections.nlp.models.language_modeling.megatron_retrieval_model import MegatronRetrievalModel from nemo.collections.nlp.modules.common.megatron.megatron_init import initialize_model_parallel_for_nemo from nemo.collections.nlp.parts.nlp_overrides import ( GradScaler, MegatronHalfPrecisionPlugin, NLPDDPStrategy, NLPSaveRestoreConnector, ) from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="megatron_retro_config") def main(cfg) -> None: logging.info("\n\n************** Experiment configuration ***********") logging.info(f'\n{OmegaConf.to_yaml(cfg)}') megatron_amp_o2 = cfg.model.get('megatron_amp_O2', False) plugins = [] strategy = NLPDDPStrategy( no_ddp_communication_hook=True if megatron_amp_o2 else False, gradient_as_bucket_view=cfg.model.gradient_as_bucket_view, find_unused_parameters=False, ) if cfg.trainer.precision in [16, 'bf16']: scaler = None if cfg.trainer.precision == 16: scaler = GradScaler( init_scale=cfg.model.get('native_amp_init_scale', 2 ** 32), growth_interval=cfg.model.get('native_amp_growth_interval', 1000), hysteresis=cfg.model.get('hysteresis', 2), ) if megatron_amp_o2: plugins.append(MegatronHalfPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler)) else: plugins.append(NativeMixedPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler)) if cfg.get('cluster_type', None) == 'BCP': plugins.append(TorchElasticEnvironment()) trainer = Trainer(plugins=plugins, strategy=strategy, **cfg.trainer) exp_manager(trainer, cfg.exp_manager) # update resume from checkpoint found by exp_manager resume_from_checkpoint = trainer._checkpoint_connector.resume_from_checkpoint_fit_path # resume_from_checkpoint = uninject_model_parallel_rank(resume_from_checkpoint) logging.info(f'Resuming training from checkpoint: {resume_from_checkpoint}') trainer._checkpoint_connector = CheckpointConnector(trainer, resume_from_checkpoint=resume_from_checkpoint) # hydra interpolation does not work here as the interpolation key is lost when PTL saves hparams with open_dict(cfg): cfg.model.precision = cfg.trainer.precision # load existing nemo retro model if cfg.get("restore_from_path", None) is not None: save_restore_connector = NLPSaveRestoreConnector() if os.path.isdir(cfg.restore_from_path): save_restore_connector.model_extracted_dir = cfg.restore_from_path model = MegatronRetrievalModel.restore_from( restore_path=cfg.restore_from_path, trainer=trainer, override_config_path=cfg.model, save_restore_connector=save_restore_connector, strict=False, ) else: model = MegatronRetrievalModel(cfg.model, trainer) trainer.fit(model) if __name__ == '__main__': main()