# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Please see tutorial at Nemo/tutorials/nlp/Entity_Linking_Medical.ipynb for # more information on entity linking and self alignment pretraining. from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from nemo.collections.nlp.models import EntityLinkingModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="umls_medical_entity_linking_config.yaml") def main(cfg: DictConfig) -> None: logging.info(f"\nConfig Params:\n{OmegaConf.to_yaml(cfg)}") trainer = Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) logging.info(f"Loading weights from pretrained model {cfg.model.language_model.pretrained_model_name}") model = EntityLinkingModel(cfg=cfg.model, trainer=trainer) logging.info("===========================================================================================") logging.info('Starting training...') trainer.fit(model) logging.info('Training finished!') logging.info("===========================================================================================") if cfg.model.nemo_path: # '.nemo' file contains the last checkpoint and the params to initialize the model model.save_to(cfg.model.nemo_path) logging.info(f'Model is saved into `.nemo` file: {cfg.model.nemo_path}') if __name__ == '__main__': main()