# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Script for inference ASR models using TensorRT """ import os from argparse import ArgumentParser import numpy as np import pycuda.driver as cuda import tensorrt as trt import torch from omegaconf import open_dict from nemo.collections.asr.metrics.wer import WER, CTCDecoding, CTCDecodingConfig, word_error_rate from nemo.collections.asr.models import EncDecCTCModel from nemo.utils import logging # Use autoprimaryctx if available (pycuda >= 2021.1) to # prevent issues with other modules that rely on the primary # device context. try: import pycuda.autoprimaryctx except ModuleNotFoundError: import pycuda.autoinit TRT_LOGGER = trt.Logger() can_gpu = torch.cuda.is_available() try: from torch.cuda.amp import autocast except ImportError: from contextlib import contextmanager @contextmanager def autocast(enabled=None): yield def main(): parser = ArgumentParser() parser.add_argument( "--asr_model", type=str, default="QuartzNet15x5Base-En", required=True, help="Pass: 'QuartzNet15x5Base-En'", ) parser.add_argument( "--asr_onnx", type=str, default="./QuartzNet15x5Base-En-max-32.onnx", help="Pass: 'QuartzNet15x5Base-En-max-32.onnx'", ) parser.add_argument("--dataset", type=str, required=True, help="path to evaluation data") parser.add_argument("--batch_size", type=int, default=4) parser.add_argument( "--dont_normalize_text", default=False, action='store_false', help="Turn off trasnscript normalization. Recommended for non-English.", ) parser.add_argument( "--use_cer", default=False, action='store_true', help="Use Character Error Rate as the evaluation metric" ) parser.add_argument('--qat', action="store_true", help="Use onnx file exported from QAT tools") args = parser.parse_args() torch.set_grad_enabled(False) if args.asr_model.endswith('.nemo'): logging.info(f"Using local ASR model from {args.asr_model}") asr_model_cfg = EncDecCTCModel.restore_from(restore_path=args.asr_model, return_config=True) with open_dict(asr_model_cfg): asr_model_cfg.encoder.quantize = True asr_model = EncDecCTCModel.restore_from(restore_path=args.asr_model, override_config_path=asr_model_cfg) else: logging.info(f"Using NGC cloud ASR model {args.asr_model}") asr_model_cfg = EncDecCTCModel.from_pretrained(model_name=args.asr_model, return_config=True) with open_dict(asr_model_cfg): asr_model_cfg.encoder.quantize = True asr_model = EncDecCTCModel.from_pretrained(model_name=args.asr_model, override_config_path=asr_model_cfg) asr_model.setup_test_data( test_data_config={ 'sample_rate': 16000, 'manifest_filepath': args.dataset, 'labels': asr_model.decoder.vocabulary, 'batch_size': args.batch_size, 'normalize_transcripts': args.dont_normalize_text, } ) asr_model.preprocessor.featurizer.dither = 0.0 asr_model.preprocessor.featurizer.pad_to = 0 if can_gpu: asr_model = asr_model.cuda() asr_model.eval() labels_map = dict([(i, asr_model.decoder.vocabulary[i]) for i in range(len(asr_model.decoder.vocabulary))]) decoding_cfg = CTCDecodingConfig() char_decoding = CTCDecoding(decoding_cfg, vocabulary=labels_map) wer = WER(char_decoding, use_cer=args.use_cer) wer_result = evaluate(asr_model, args.asr_onnx, labels_map, wer, args.qat) logging.info(f'Got WER of {wer_result}.') def get_min_max_input_shape(asr_model): max_shape = (1, 64, 1) min_shape = (64, 64, 99999) for test_batch in asr_model.test_dataloader(): test_batch = [x.cuda() for x in test_batch] processed_signal, processed_signal_length = asr_model.preprocessor( input_signal=test_batch[0], length=test_batch[1] ) shape = processed_signal.cpu().numpy().shape if shape[0] > max_shape[0]: max_shape = (shape[0], *max_shape[1:]) if shape[0] < min_shape[0]: min_shape = (shape[0], *min_shape[1:]) if shape[2] > max_shape[2]: max_shape = (*max_shape[0:2], shape[2]) if shape[2] < min_shape[2]: min_shape = (*min_shape[0:2], shape[2]) return min_shape, max_shape def build_trt_engine(asr_model, onnx_path, qat): trt_engine_path = "{}.trt".format(onnx_path) if os.path.exists(trt_engine_path): return trt_engine_path min_input_shape, max_input_shape = get_min_max_input_shape(asr_model) workspace_size = 512 with trt.Builder(TRT_LOGGER) as builder: network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) if qat: network_flags |= 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION) with builder.create_network(flags=network_flags) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser, builder.create_builder_config() as builder_config: parser.parse_from_file(onnx_path) builder_config.max_workspace_size = workspace_size * (1024 * 1024) if qat: builder_config.set_flag(trt.BuilderFlag.INT8) profile = builder.create_optimization_profile() profile.set_shape("audio_signal", min=min_input_shape, opt=max_input_shape, max=max_input_shape) builder_config.add_optimization_profile(profile) engine = builder.build_engine(network, builder_config) serialized_engine = engine.serialize() with open(trt_engine_path, "wb") as fout: fout.write(serialized_engine) return trt_engine_path def trt_inference(stream, trt_ctx, d_input, d_output, input_signal, input_signal_length): print("infer with shape: {}".format(input_signal.shape)) trt_ctx.set_binding_shape(0, input_signal.shape) assert trt_ctx.all_binding_shapes_specified h_output = cuda.pagelocked_empty(tuple(trt_ctx.get_binding_shape(1)), dtype=np.float32) h_input_signal = cuda.register_host_memory(np.ascontiguousarray(input_signal.cpu().numpy().ravel())) cuda.memcpy_htod_async(d_input, h_input_signal, stream) trt_ctx.execute_async_v2(bindings=[int(d_input), int(d_output)], stream_handle=stream.handle) cuda.memcpy_dtoh_async(h_output, d_output, stream) stream.synchronize() greedy_predictions = torch.tensor(h_output).argmax(dim=-1, keepdim=False) return greedy_predictions def evaluate(asr_model, asr_onnx, labels_map, wer, qat): # Eval the model hypotheses = [] references = [] stream = cuda.Stream() vocabulary_size = len(labels_map) + 1 engine_file_path = build_trt_engine(asr_model, asr_onnx, qat) with open(engine_file_path, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime: trt_engine = runtime.deserialize_cuda_engine(f.read()) trt_ctx = trt_engine.create_execution_context() profile_shape = trt_engine.get_profile_shape(profile_index=0, binding=0) print("profile shape min:{}, opt:{}, max:{}".format(profile_shape[0], profile_shape[1], profile_shape[2])) max_input_shape = profile_shape[2] input_nbytes = trt.volume(max_input_shape) * trt.float32.itemsize d_input = cuda.mem_alloc(input_nbytes) max_output_shape = [max_input_shape[0], vocabulary_size, (max_input_shape[-1] + 1) // 2] output_nbytes = trt.volume(max_output_shape) * trt.float32.itemsize d_output = cuda.mem_alloc(output_nbytes) for test_batch in asr_model.test_dataloader(): if can_gpu: test_batch = [x.cuda() for x in test_batch] processed_signal, processed_signal_length = asr_model.preprocessor( input_signal=test_batch[0], length=test_batch[1] ) greedy_predictions = trt_inference( stream, trt_ctx, d_input, d_output, input_signal=processed_signal, input_signal_length=processed_signal_length, ) hypotheses += wer.decoding.ctc_decoder_predictions_tensor(greedy_predictions)[0] for batch_ind in range(greedy_predictions.shape[0]): seq_len = test_batch[3][batch_ind].cpu().detach().numpy() seq_ids = test_batch[2][batch_ind].cpu().detach().numpy() reference = ''.join([labels_map[c] for c in seq_ids[0:seq_len]]) references.append(reference) del test_batch wer_value = word_error_rate(hypotheses=hypotheses, references=references, use_cer=wer.use_cer) return wer_value if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter