# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ # Evaluate an adapted model python eval_asr_adapter.py \ --config-path="../conf/asr_adapters" \ --config-name="asr_adaptation.yaml" \ model.pretrained_model=null \ model.nemo_model=null \ model.adapter.adapter_name= \ model.test_ds.manifest_filepath="" \ model.test_ds.batch_size=16 \ model.train_ds.manifest_filepath=null \ model.validation_ds.manifest_filepath=null \ model.adapter.in_features=null \ trainer.devices=1 \ trainer.precision=32 # Pretrained Models For documentation on existing pretrained models, please visit - https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/results.html """ import pytorch_lightning as pl from omegaconf import OmegaConf, open_dict from nemo.collections.asr.models import ASRModel from nemo.core import adapter_mixins from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager def update_encoder_config_to_support_adapter(model_cfg): with open_dict(model_cfg): adapter_metadata = adapter_mixins.get_registered_adapter(model_cfg.encoder._target_) if adapter_metadata is not None: model_cfg.encoder._target_ = adapter_metadata.adapter_class_path def update_model_cfg(original_cfg, new_cfg): with open_dict(new_cfg): # drop keys which dont exist in old config new_keys = list(new_cfg.keys()) for key in new_keys: if key not in original_cfg: new_cfg.pop(key) print("Removing unavailable key from config :", key) new_cfg = OmegaConf.merge(original_cfg, new_cfg) return new_cfg @hydra_runner(config_path="../conf/asr_adapters", config_name="asr_adaptation.yaml") def main(cfg): logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') if cfg.model.pretrained_model is None and cfg.model.nemo_model is None: raise ValueError("Either set `cfg.model.nemo_model` or `cfg.model.pretrained_model`") if cfg.model.pretrained_model is not None and cfg.model.nemo_model is not None: raise ValueError("Cannot set `cfg.model.nemo_model` and `cfg.model.pretrained_model`. Select one only.") trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) if cfg.model.pretrained_model is not None: model_cfg = ASRModel.from_pretrained(cfg.model.pretrained_model, return_config=True) update_encoder_config_to_support_adapter(model_cfg) model = ASRModel.from_pretrained(cfg.model.pretrained_model, override_config_path=model_cfg, trainer=trainer) else: model_cfg = ASRModel.restore_from(cfg.model.nemo_model, return_config=True) update_encoder_config_to_support_adapter(model_cfg) model = ASRModel.restore_from(cfg.model.nemo_model, override_config_path=model_cfg, trainer=trainer) # Setup model for finetuning (train and validation only) cfg.model.test_ds = update_model_cfg(model.cfg.test_ds, cfg.model.test_ds) # Call the dataloaders and optimizer + scheduler model.setup_multiple_test_data(cfg.model.test_ds) # Setup adapters with open_dict(cfg.model.adapter): adapter_name = cfg.model.adapter.pop("adapter_name", None) # Disable all other adapters, enable just the current adapter. model.set_enabled_adapters(enabled=False) # disable all adapters prior to training if adapter_name is not None: model.set_enabled_adapters(adapter_name, enabled=True) # enable just one adapter by name if provided # First, Freeze all the weights of the model (not just encoder, everything) model.freeze() # Finally, train model trainer.test(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter