NeMo / scripts /nlp_language_modeling /preprocess_data_for_megatron.py
camenduru's picture
thanks to NVIDIA ❤
7934b29
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processing data for megatron pretraining.
It can be used to convert the text data into indexed dataset for BERT, GPT, T5, RETRO models etc.
Example script to preprocess the loose JSON file for BERT model
```python
python scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=PATH_TO_THE_RETRIEVAL_DB_LOOSE_JSON_FILE \
--json-keys=text \
--vocab-file=PATH_TO_VOCAB_FILE \
--dataset-impl=mmap \
--output-prefix=YOUR_DATA_PREFIX \
--tokenizer-library=megatron \
--tokenizer-type=BertWordPieceCase \
--split-sentences \
--workers=48
```
Example script to preprocess the loose JSON file for GPT model
```python
python scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=PATH_TO_THE_RETRIEVAL_DB_LOOSE_JSON_FILE \
--json-keys=text \
--tokenizer-library=megatron \
--tokenizer-type=GPT2BPETokenizer \
--dataset-impl=mmap \
--merge-file=YOUR_MERGE_FILE \
--vocab-file=YOUR_VOCAB_FILE \
--output-prefix=YOUR_DATA_PREFIX \
--append-eod \
--workers=48
```
Example script to preprocess the loose JSON file for retrieval DB Dataset
```python
python scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=PATH_TO_THE_RETRIEVAL_DB_LOOSE_JSON_FILE \
--json-keys=text \
--tokenizer-library=sentencepiece \
--dataset-impl=retmmap \
--tokenizer-model=tokenizer.model \
--output-prefix=retro_db \
--need-pad-id \
--append-eod \
--retrieval-db \
--chunk_size=64 \
--workers=64
```
Example script to preprocess the JSON file for retrieval training dataset
```python
python scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=PATH_TO_THE_RETRIEVAL_TRAIN_VAL_TEST_LOOSE_JSON_FILE \
--json-keys=text \
--tokenizer-library=sentencepiece \
--dataset-impl=retmmap \
--tokenizer-model=tokenizer.model \
--output-prefix=retro_data \
--need-pad-id \
--append-eod \
--chunk_size=64 \
--workers=64
```
"""
import argparse
import gzip
import json
import multiprocessing
import os
import pathlib
import sys
import time
import ftfy
import torch
from nemo.collections.nlp.data.language_modeling.megatron import indexed_dataset
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer
try:
import nltk
nltk_available = True
except ImportError:
nltk_available = False
# https://stackoverflow.com/questions/33139531/preserve-empty-lines-with-nltks-punkt-tokenizer
class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars):
_period_context_fmt = r"""
\S* # some word material
%(SentEndChars)s # a potential sentence ending
\s* # <-- THIS is what I changed
(?=(?P<after_tok>
%(NonWord)s # either other punctuation
|
(?P<next_tok>\S+) # <-- Normally you would have \s+ here
))"""
class IdentitySplitter(object):
def tokenize(self, *text):
return text
def get_tokenizer(args):
tokenizer = get_nmt_tokenizer(
library=args.tokenizer_library,
model_name=args.tokenizer_type,
tokenizer_model=args.tokenizer_model,
vocab_file=args.vocab_file,
merges_file=args.merge_file,
delimiter=args.delimiter,
)
if args.need_pad_id:
if not hasattr(tokenizer, "pad_id"):
tokenizer.add_special_tokens({'pad_token': '<pad>'})
elif hasattr(tokenizer, "pad_id") and (tokenizer.pad_id is None or tokenizer.pad_id < 0):
tokenizer.add_special_tokens({'pad_token': '<pad>'})
return tokenizer
class Encoder(object):
def __init__(self, args):
self.args = args
def initializer(self):
# Use Encoder class as a container for global data
Encoder.tokenizer = get_tokenizer(self.args)
if self.args.split_sentences:
if not nltk_available:
print("NLTK is not available to split sentences.")
exit()
splitter = nltk.load("tokenizers/punkt/english.pickle")
if self.args.keep_newlines:
# this prevents punkt from eating newlines after sentences
Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer(
train_text=splitter._params, lang_vars=CustomLanguageVars()
)
else:
Encoder.splitter = splitter
else:
Encoder.splitter = IdentitySplitter()
def encode(self, json_line):
if not self.args.text_file:
data = json.loads(json_line)
ids = {}
for key in self.args.json_keys:
text = data[key]
if self.args.apply_ftfy:
text = ftfy.fix_text(text)
doc_ids = []
for sentence in Encoder.splitter.tokenize(text):
sentence_ids = Encoder.tokenizer.text_to_ids(sentence)
if len(sentence_ids) > 0:
doc_ids.append(sentence_ids)
if len(doc_ids) > 0 and self.args.append_eod:
doc_ids[-1].append(Encoder.tokenizer.eos_id)
ids[key] = doc_ids
else:
data = json_line
ids = {}
text = data.strip()
if self.args.apply_ftfy:
text = ftfy.fix_text(text)
doc_ids = []
for sentence in Encoder.splitter.tokenize(text):
sentence_ids = Encoder.tokenizer.text_to_ids(sentence)
if len(sentence_ids) > 0:
doc_ids.append(sentence_ids)
if len(doc_ids) > 0 and self.args.append_eod:
doc_ids[-1].append(Encoder.tokenizer.eos_id)
ids['text'] = doc_ids
return ids, len(json_line)
def get_args():
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title='input data')
group.add_argument(
'--input',
type=str,
required=True,
help='Path to the input json or json.gz file. If preprocessing an entire folder, set the --preproc-folder flag and provide the path to the folder in this arg.',
)
group.add_argument(
'--json-keys', nargs='+', default=['text'], help='space separate listed of keys to extract from json'
)
group.add_argument('--split-sentences', action='store_true', help='Split documents into sentences.')
group.add_argument('--keep-newlines', action='store_true', help='Keep newlines between sentences when splitting.')
group.add_argument('--text_file', action='store_true', help='Use text file instead of json.')
group = parser.add_argument_group(title='tokenizer')
group.add_argument(
'--tokenizer-library',
type=str,
required=True,
choices=['yttm', 'sentencepiece', 'megatron', 'huggingface', 'tabular'],
help='What tokenizer library to use.',
)
group.add_argument(
'--tokenizer-type', type=str, default=None, help='What type of tokenizer to use.',
)
group.add_argument(
'--tokenizer-model', type=str, default=None, help='Path to tokenizer model.',
)
group.add_argument('--vocab-file', type=str, default=None, help='Path to the vocab file')
group.add_argument('--files-filter', type=str, default='**/*.json*', help='files filter str')
group.add_argument('--merge-file', type=str, default=None, help='Path to the BPE merge file (if necessary).')
group.add_argument('--delimiter', type=str, default=None, help='delimiter used for tabular tokenizer')
group.add_argument('--append-eod', action='store_true', help='Append an <eod> token to the end of a document.')
group.add_argument('--retrieval-db', action='store_true', help='Dataset used for retrieval.')
group.add_argument('--need-pad-id', action='store_true', help='Whether we need the pad id for the tokenizer')
group = parser.add_argument_group(title='output data')
group.add_argument('--output-prefix', type=str, required=True, help='Path to binary output file without suffix')
group.add_argument('--dataset-impl', type=str, default='mmap', choices=['lazy', 'cached', 'mmap', 'retmmap'])
group = parser.add_argument_group(title='runtime')
group.add_argument('--workers', type=int, default=1, help='Number of worker processes to launch')
group.add_argument('--chunk_size', type=int, default=64, help='chunk size used for retrieval')
group.add_argument(
'--chunk_stride_size', type=int, default=64, help='the stride size for neighbor chunks used for retrieval'
)
group.add_argument('--log-interval', type=int, default=100, help='Interval between progress updates')
group.add_argument(
'--preproc-folder',
action='store_true',
help='If set, will preprocess all .json or .json.gz files into a single .bin and .idx file. Folder path provided via the --input arg',
)
group.add_argument('--apply-ftfy', action='store_true', help='If set, will apply ftfy to the input text')
args = parser.parse_args()
args.keep_empty = False
if args.tokenizer_type is not None and args.tokenizer_type.lower().startswith('bert'):
if not args.split_sentences:
print("Bert tokenizer detected, are you sure you don't want to split sentences?")
# some default/dummy values for the tokenizer
args.rank = 0
args.make_vocab_size_divisible_by = 128
args.tensor_model_parallel_size = 1
args.vocab_extra_ids = 0
# TODO: There are dependencies b/w libraries and model files / tokenizer type strings to check.
assert args.tokenizer_type is not None or args.tokenizer_model is not None
return args
def main():
args = get_args()
startup_start = time.time()
if args.preproc_folder:
print('Searching folder for .json or .json.gz files...')
assert os.path.exists(args.input), f'Folder does not exist: {args.input}'
json_files = (str(f) for f in pathlib.Path(args.input).glob(args.files_filter))
json_files = [f for f in json_files if f.endswith('.json') or f.endswith('.json.gz')]
if len(json_files) == 0:
raise FileNotFoundError('No .json or .json.gz files found in folder.')
else:
print(f'Found {len(json_files)} .json or .json.gz files.')
else:
assert os.path.exists(args.input), f'File does not exist: {args.input}'
json_files = [args.input]
if nltk_available and args.split_sentences:
nltk.download("punkt", quiet=True)
encoder = Encoder(args)
if args.dataset_impl == 'retmmap':
assert args.need_pad_id, "retmmap need --need_pad_id flag"
tokenizer = get_tokenizer(args)
level = "document"
if args.split_sentences:
level = "sentence"
print(f"Vocab size: {tokenizer.vocab_size}")
print(f"Output prefix: {args.output_prefix}")
output_bin_files = {}
output_idx_files = {}
builders = {}
for key in args.json_keys:
output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix, key, level)
output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix, key, level)
builders[key] = indexed_dataset.make_builder(
output_bin_files[key],
impl=args.dataset_impl,
chunk_size=args.chunk_size,
pad_id=tokenizer.pad_id if hasattr(tokenizer, "pad_id") else 0,
retrieval_db=args.retrieval_db,
vocab_size=tokenizer.vocab_size,
stride=args.chunk_stride_size,
)
startup_end = time.time()
proc_start = time.time()
total_bytes_processed = 0
print("Time to startup:", startup_end - startup_start)
pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
for idx, json_file in enumerate(json_files):
print(f'Processing file {json_file} {idx + 1}/{len(json_files)}')
if json_file.endswith('.gz'):
fin = gzip.open(json_file, 'r')
else:
fin = open(args.input, 'r', encoding='utf-8')
encoded_docs = pool.imap(encoder.encode, fin, 25)
for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
total_bytes_processed += bytes_processed
for key, sentences in doc.items():
if len(sentences) == 0:
continue
for sentence in sentences:
builders[key].add_item(torch.IntTensor(sentence))
builders[key].end_document()
if i % args.log_interval == 0:
current = time.time()
elapsed = current - proc_start
mbs = total_bytes_processed / elapsed / 1024 / 1024
print(f"Processed {i} documents", f"({i/elapsed} docs/s, {mbs} MB/s).", file=sys.stderr)
for key in args.json_keys:
builders[key].finalize(output_idx_files[key])
if __name__ == '__main__':
main()