|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import json |
|
import re |
|
import string |
|
from collections import Counter |
|
|
|
|
|
""" |
|
This script can be used to calcualte exact match and F1 scores for many different tasks, not just squad. |
|
|
|
Example command for T5 Preds |
|
|
|
``` |
|
python squad_metric_calc.py \ |
|
--ground-truth squad_test_gt.jsonl \ |
|
--preds squad_preds_t5.txt |
|
``` |
|
|
|
Example command for GPT Preds |
|
|
|
``` |
|
python squad_metric_calc.py \ |
|
--ground-truth squad_test_gt.jsonl \ |
|
--preds squad_preds_gpt.txt \ |
|
--split-string "answer:" |
|
``` |
|
|
|
In this case, the prediction file will be split on "answer: " when looking for the LM's predicted answer. |
|
|
|
""" |
|
|
|
|
|
def normalize_answer(s): |
|
"""Lower text and remove punctuation, articles and extra whitespace.""" |
|
|
|
def remove_articles(text): |
|
return re.sub(r'\b(a|an|the)\b', ' ', text) |
|
|
|
def white_space_fix(text): |
|
return ' '.join(text.split()) |
|
|
|
def remove_punc(text): |
|
exclude = set(string.punctuation) |
|
return ''.join(ch for ch in text if ch not in exclude) |
|
|
|
def lower(text): |
|
return text.lower() |
|
|
|
return white_space_fix(remove_articles(remove_punc(lower(s)))) |
|
|
|
|
|
def f1_score(prediction, ground_truth): |
|
prediction_tokens = normalize_answer(prediction).split() |
|
ground_truth_tokens = normalize_answer(ground_truth).split() |
|
common = Counter(prediction_tokens) & Counter(ground_truth_tokens) |
|
num_same = sum(common.values()) |
|
if num_same == 0: |
|
return 0 |
|
precision = 1.0 * num_same / len(prediction_tokens) |
|
recall = 1.0 * num_same / len(ground_truth_tokens) |
|
f1 = (2 * precision * recall) / (precision + recall) |
|
return f1 |
|
|
|
|
|
def exact_match_score(prediction, ground_truth): |
|
return normalize_answer(prediction) == normalize_answer(ground_truth) |
|
|
|
|
|
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): |
|
scores_for_ground_truths = [] |
|
for ground_truth in ground_truths: |
|
score = metric_fn(prediction, ground_truth) |
|
scores_for_ground_truths.append(score) |
|
return max(scores_for_ground_truths) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Process some integers.') |
|
parser.add_argument( |
|
'--ground-truth', |
|
type=str, |
|
help="ground truth .jsonl file made from /NeMo/scripts/dataset_processing/nlp/squad/prompt_learning_squad_preprocessing.py", |
|
) |
|
parser.add_argument( |
|
'--preds', |
|
type=str, |
|
help="Text file with test set prompts + model predictions. Prediction file can be made by running NeMo/examples/nlp/language_modeling/megatron_gpt_prompt_learning_eval.py", |
|
) |
|
parser.add_argument( |
|
'--split-string', |
|
type=str, |
|
help="The text at the end of the prompt, write before the predicted answer. This will be used to find the model's predictions in pred files when the pred file containers both the prompt and prediction.", |
|
default=None, |
|
) |
|
parser.add_argument( |
|
'--answer-field', |
|
type=str, |
|
help="The field in the json file that contains the ground truth tokens", |
|
default="answer", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
ground_truth_file = args.ground_truth |
|
pred_file = args.preds |
|
|
|
preds = open(pred_file, encoding="utf-8").readlines() |
|
ground_truth = open(ground_truth_file).readlines() |
|
f1 = exact_match = total = 0 |
|
|
|
for i in range(len(preds)): |
|
truth = json.loads(ground_truth[i]) |
|
pred_answer = preds[i] |
|
|
|
|
|
if args.split_string is not None: |
|
pred_answer = pred_answer.split(args.split_string)[-1].strip() |
|
|
|
true_answers = truth[args.answer_field] |
|
if not isinstance(true_answers, list): |
|
true_answers = [true_answers] |
|
|
|
exact_match += metric_max_over_ground_truths(exact_match_score, pred_answer, true_answers) |
|
f1 += metric_max_over_ground_truths(f1_score, pred_answer, true_answers) |
|
total += 1 |
|
|
|
exact_match = 100.0 * exact_match / total |
|
f1 = 100.0 * f1 / total |
|
|
|
print({'exact_match': exact_match, 'f1': f1, 'total': total}) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|