NeMo / nemo /utils /config_utils.py
camenduru's picture
thanks to NVIDIA ❤
7934b29
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
from dataclasses import is_dataclass
from typing import Dict, List, Optional
from nemo.utils import logging
# TODO @blisc: Perhaps refactor instead of import guarding
_HAS_HYDRA = True
try:
from omegaconf import DictConfig, OmegaConf, open_dict
except ModuleNotFoundError:
_HAS_HYDRA = False
def update_model_config(
model_cls: 'nemo.core.config.modelPT.NemoConfig', update_cfg: 'DictConfig', drop_missing_subconfigs: bool = True
):
"""
Helper class that updates the default values of a ModelPT config class with the values
in a DictConfig that mirrors the structure of the config class.
Assumes the `update_cfg` is a DictConfig (either generated manually, via hydra or instantiated via yaml/model.cfg).
This update_cfg is then used to override the default values preset inside the ModelPT config class.
If `drop_missing_subconfigs` is set, the certain sub-configs of the ModelPT config class will be removed, if
they are not found in the mirrored `update_cfg`. The following sub-configs are subject to potential removal:
- `train_ds`
- `validation_ds`
- `test_ds`
- `optim` + nested `sched`.
Args:
model_cls: A subclass of NemoConfig, that details in entirety all of the parameters that constitute
the NeMo Model.
update_cfg: A DictConfig that mirrors the structure of the NemoConfig data class. Used to update the
default values of the config class.
drop_missing_subconfigs: Bool which determins whether to drop certain sub-configs from the NemoConfig
class, if the corresponding sub-config is missing from `update_cfg`.
Returns:
A DictConfig with updated values that can be used to instantiate the NeMo Model along with supporting
infrastructure.
"""
if not _HAS_HYDRA:
logging.error("This function requires Hydra/Omegaconf and it was not installed.")
exit(1)
if not (is_dataclass(model_cls) or isinstance(model_cls, DictConfig)):
raise ValueError("`model_cfg` must be a dataclass or a structured OmegaConf object")
if not isinstance(update_cfg, DictConfig):
update_cfg = OmegaConf.create(update_cfg)
if is_dataclass(model_cls):
model_cls = OmegaConf.structured(model_cls)
# Update optional configs
model_cls = _update_subconfig(
model_cls, update_cfg, subconfig_key='train_ds', drop_missing_subconfigs=drop_missing_subconfigs
)
model_cls = _update_subconfig(
model_cls, update_cfg, subconfig_key='validation_ds', drop_missing_subconfigs=drop_missing_subconfigs
)
model_cls = _update_subconfig(
model_cls, update_cfg, subconfig_key='test_ds', drop_missing_subconfigs=drop_missing_subconfigs
)
model_cls = _update_subconfig(
model_cls, update_cfg, subconfig_key='optim', drop_missing_subconfigs=drop_missing_subconfigs
)
# Add optim and sched additional keys to model cls
model_cls = _add_subconfig_keys(model_cls, update_cfg, subconfig_key='optim')
# Perform full merge of model config class and update config
# Remove ModelPT artifact `target`
if 'target' in update_cfg.model:
# Assume artifact from ModelPT and pop
if 'target' not in model_cls.model:
with open_dict(update_cfg.model):
update_cfg.model.pop('target')
# Remove ModelPT artifact `nemo_version`
if 'nemo_version' in update_cfg.model:
# Assume artifact from ModelPT and pop
if 'nemo_version' not in model_cls.model:
with open_dict(update_cfg.model):
update_cfg.model.pop('nemo_version')
model_cfg = OmegaConf.merge(model_cls, update_cfg)
return model_cfg
def _update_subconfig(
model_cfg: 'DictConfig', update_cfg: 'DictConfig', subconfig_key: str, drop_missing_subconfigs: bool
):
"""
Updates the NemoConfig DictConfig such that:
1) If the sub-config key exists in the `update_cfg`, but does not exist in ModelPT config:
- Add the sub-config from update_cfg to ModelPT config
2) If the sub-config key does not exist in `update_cfg`, but exists in ModelPT config:
- Remove the sub-config from the ModelPT config; iff the `drop_missing_subconfigs` flag is set.
Args:
model_cfg: A DictConfig instantiated from the NemoConfig subclass.
update_cfg: A DictConfig that mirrors the structure of `model_cfg`, used to update its default values.
subconfig_key: A str key used to check and update the sub-config.
drop_missing_subconfigs: A bool flag, whether to allow deletion of the NemoConfig sub-config,
if its mirror sub-config does not exist in the `update_cfg`.
Returns:
The updated DictConfig for the NemoConfig
"""
if not _HAS_HYDRA:
logging.error("This function requires Hydra/Omegaconf and it was not installed.")
exit(1)
with open_dict(model_cfg.model):
# If update config has the key, but model cfg doesnt have the key
# Add the update cfg subconfig to the model cfg
if subconfig_key in update_cfg.model and subconfig_key not in model_cfg.model:
model_cfg.model[subconfig_key] = update_cfg.model[subconfig_key]
# If update config does not the key, but model cfg has the key
# Remove the model cfg subconfig in order to match layout of update cfg
if subconfig_key not in update_cfg.model and subconfig_key in model_cfg.model:
if drop_missing_subconfigs:
model_cfg.model.pop(subconfig_key)
return model_cfg
def _add_subconfig_keys(model_cfg: 'DictConfig', update_cfg: 'DictConfig', subconfig_key: str):
"""
For certain sub-configs, the default values specified by the NemoConfig class is insufficient.
In order to support every potential value in the merge between the `update_cfg`, it would require
explicit definition of all possible cases.
An example of such a case is Optimizers, and their equivalent Schedulers. All optimizers share a few basic
details - such as name and lr, but almost all require additional parameters - such as weight decay.
It is impractical to create a config for every single optimizer + every single scheduler combination.
In such a case, we perform a dual merge. The Optim and Sched Dataclass contain the bare minimum essential
components. The extra values are provided via update_cfg.
In order to enable the merge, we first need to update the update sub-config to incorporate the keys,
with dummy temporary values (merge update config with model config). This is done on a copy of the
update sub-config, as the actual override values might be overriden by the NemoConfig defaults.
Then we perform a merge of this temporary sub-config with the actual override config in a later step
(merge model_cfg with original update_cfg, done outside this function).
Args:
model_cfg: A DictConfig instantiated from the NemoConfig subclass.
update_cfg: A DictConfig that mirrors the structure of `model_cfg`, used to update its default values.
subconfig_key: A str key used to check and update the sub-config.
Returns:
A ModelPT DictConfig with additional keys added to the sub-config.
"""
if not _HAS_HYDRA:
logging.error("This function requires Hydra/Omegaconf and it was not installed.")
exit(1)
with open_dict(model_cfg.model):
# Create copy of original model sub config
if subconfig_key in update_cfg.model:
if subconfig_key not in model_cfg.model:
# create the key as a placeholder
model_cfg.model[subconfig_key] = None
subconfig = copy.deepcopy(model_cfg.model[subconfig_key])
update_subconfig = copy.deepcopy(update_cfg.model[subconfig_key])
# Add the keys and update temporary values, will be updated during full merge
subconfig = OmegaConf.merge(update_subconfig, subconfig)
# Update sub config
model_cfg.model[subconfig_key] = subconfig
return model_cfg
def assert_dataclass_signature_match(
cls: 'class_type',
datacls: 'dataclass',
ignore_args: Optional[List[str]] = None,
remap_args: Optional[Dict[str, str]] = None,
):
"""
Analyses the signature of a provided class and its respective data class,
asserting that the dataclass signature matches the class __init__ signature.
Note:
This is not a value based check. This function only checks if all argument
names exist on both class and dataclass and logs mismatches.
Args:
cls: Any class type - but not an instance of a class. Pass type(x) where x is an instance
if class type is not easily available.
datacls: A corresponding dataclass for the above class.
ignore_args: (Optional) A list of string argument names which are forcibly ignored,
even if mismatched in the signature. Useful when a dataclass is a superset of the
arguments of a class.
remap_args: (Optional) A dictionary, mapping an argument name that exists (in either the
class or its dataclass), to another name. Useful when argument names are mismatched between
a class and its dataclass due to indirect instantiation via a helper method.
Returns:
A tuple containing information about the analysis:
1) A bool value which is True if the signatures matched exactly / after ignoring values.
False otherwise.
2) A set of arguments names that exist in the class, but *do not* exist in the dataclass.
If exact signature match occurs, this will be None instead.
3) A set of argument names that exist in the data class, but *do not* exist in the class itself.
If exact signature match occurs, this will be None instead.
"""
class_sig = inspect.signature(cls.__init__)
class_params = dict(**class_sig.parameters)
class_params.pop('self')
dataclass_sig = inspect.signature(datacls)
dataclass_params = dict(**dataclass_sig.parameters)
dataclass_params.pop("_target_", None)
class_params = set(class_params.keys())
dataclass_params = set(dataclass_params.keys())
if remap_args is not None:
for original_arg, new_arg in remap_args.items():
if original_arg in class_params:
class_params.remove(original_arg)
class_params.add(new_arg)
logging.info(f"Remapped {original_arg} -> {new_arg} in {cls.__name__}")
if original_arg in dataclass_params:
dataclass_params.remove(original_arg)
dataclass_params.add(new_arg)
logging.info(f"Remapped {original_arg} -> {new_arg} in {datacls.__name__}")
if ignore_args is not None:
ignore_args = set(ignore_args)
class_params = class_params - ignore_args
dataclass_params = dataclass_params - ignore_args
logging.info(f"Removing ignored arguments - {ignore_args}")
intersection = set.intersection(class_params, dataclass_params)
subset_cls = class_params - intersection
subset_datacls = dataclass_params - intersection
if (len(class_params) != len(dataclass_params)) or len(subset_cls) > 0 or len(subset_datacls) > 0:
logging.error(f"Class {cls.__name__} arguments do not match " f"Dataclass {datacls.__name__}!")
if len(subset_cls) > 0:
logging.error(f"Class {cls.__name__} has additional arguments :\n" f"{subset_cls}")
if len(subset_datacls):
logging.error(f"Dataclass {datacls.__name__} has additional arguments :\n{subset_datacls}")
return False, subset_cls, subset_datacls
else:
return True, None, None