|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
|
|
__all__ = ['Adafactor'] |
|
|
|
|
|
class Adafactor(Optimizer): |
|
"""Implements Adafactor algorithm. |
|
This implementation is based on: |
|
`Adafactor: Adaptive Learning Rates with Sublinear Memory Cost` |
|
(see https://arxiv.org/abs/1804.04235) |
|
Note that this optimizer internally adjusts the learning rate |
|
depending on the *scale_parameter*, *relative_step* and |
|
*warmup_init* options. To use a manual (external) learning rate |
|
schedule you should set `scale_parameter=False` and |
|
`relative_step=False`. |
|
Args: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): external learning rate (default: None) |
|
eps (tuple[float, float]): regularization constans for square gradient |
|
and parameter scale respectively (default: (1e-30, 1e-3)) |
|
clip_threshold (float): threshold of root mean square of |
|
final gradient update (default: 1.0) |
|
decay_rate (float): coefficient used to compute running averages of square |
|
gradient (default: -0.8) |
|
beta1 (float): coefficient used for computing running averages of gradient |
|
(default: None) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
scale_parameter (bool): if True, learning rate is scaled by root mean square of |
|
parameter (default: True) |
|
relative_step (bool): if True, time-dependent learning rate is computed |
|
instead of external learning rate (default: True) |
|
warmup_init (bool): time-dependent learning rate computation depends on |
|
whether warm-up initialization is being used (default: False) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=None, |
|
eps=(1e-30, 1e-3), |
|
clip_threshold=1.0, |
|
decay_rate=-0.8, |
|
beta1=None, |
|
weight_decay=0.0, |
|
scale_parameter=True, |
|
relative_step=True, |
|
warmup_init=False, |
|
min_step=1e-2, |
|
): |
|
if lr is not None and relative_step: |
|
raise ValueError("Cannot combine manual lr and relative_step options") |
|
if warmup_init and not relative_step: |
|
raise ValueError("warmup_init requires relative_step=True") |
|
self.min_step = min_step |
|
|
|
defaults = dict( |
|
lr=lr, |
|
eps=eps, |
|
clip_threshold=clip_threshold, |
|
decay_rate=decay_rate, |
|
beta1=beta1, |
|
weight_decay=weight_decay, |
|
scale_parameter=scale_parameter, |
|
relative_step=relative_step, |
|
warmup_init=warmup_init, |
|
min_step=min_step, |
|
) |
|
super(Adafactor, self).__init__(params, defaults) |
|
|
|
@property |
|
def supports_memory_efficient_fp16(self): |
|
return True |
|
|
|
@property |
|
def supports_flat_params(self): |
|
return False |
|
|
|
def _get_lr(self, param_group, param_state): |
|
rel_step_sz = param_group["lr"] |
|
if param_group["relative_step"]: |
|
min_step = 1e-6 * param_state["step"] if param_group["warmup_init"] else self.min_step |
|
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"])) |
|
param_scale = 1.0 |
|
if param_group["scale_parameter"]: |
|
param_scale = max(param_group["eps"][1], param_state["RMS"]) |
|
return param_scale * rel_step_sz |
|
|
|
def _get_options(self, param_group, param_shape): |
|
factored = len(param_shape) >= 2 |
|
use_first_moment = param_group["beta1"] is not None |
|
return factored, use_first_moment |
|
|
|
def _rms(self, tensor): |
|
return tensor.norm(2) / (tensor.numel() ** 0.5) |
|
|
|
def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col): |
|
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1) |
|
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() |
|
return torch.mul(r_factor, c_factor) |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
Args: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
if grad.dtype in {torch.float16, torch.bfloat16}: |
|
grad = grad.float() |
|
if grad.is_sparse: |
|
raise RuntimeError("Adafactor does not support sparse gradients.") |
|
|
|
state = self.state[p] |
|
grad_shape = grad.shape |
|
|
|
factored, use_first_moment = self._get_options(group, grad_shape) |
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
|
|
if use_first_moment: |
|
|
|
state["exp_avg"] = torch.zeros_like(grad) |
|
if factored: |
|
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad) |
|
state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad) |
|
else: |
|
state["exp_avg_sq"] = torch.zeros_like(grad) |
|
|
|
state["RMS"] = 0 |
|
else: |
|
if use_first_moment: |
|
state["exp_avg"] = state["exp_avg"].to(grad) |
|
if factored: |
|
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad) |
|
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad) |
|
else: |
|
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) |
|
|
|
p_data_fp32 = p.data |
|
if p.data.dtype in {torch.float16, torch.bfloat16}: |
|
p_data_fp32 = p_data_fp32.float() |
|
|
|
state["step"] += 1 |
|
state["RMS"] = self._rms(p_data_fp32) |
|
group["lr"] = self._get_lr(group, state) |
|
|
|
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"]) |
|
update = (grad ** 2) + group["eps"][0] |
|
if factored: |
|
exp_avg_sq_row = state["exp_avg_sq_row"] |
|
exp_avg_sq_col = state["exp_avg_sq_col"] |
|
|
|
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=1.0 - beta2t) |
|
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=1.0 - beta2t) |
|
|
|
|
|
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col) |
|
update.mul_(grad) |
|
else: |
|
exp_avg_sq = state["exp_avg_sq"] |
|
|
|
exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t) |
|
update = exp_avg_sq.rsqrt().mul_(grad) |
|
|
|
update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)) |
|
update.mul_(group["lr"]) |
|
|
|
if use_first_moment: |
|
exp_avg = state["exp_avg"] |
|
exp_avg.mul_(group["beta1"]).add_(update, alpha=1 - group["beta1"]) |
|
update = exp_avg |
|
|
|
if group["weight_decay"] != 0: |
|
p_data_fp32.add_(p_data_fp32, alpha=-group["weight_decay"] * group["lr"]) |
|
|
|
p_data_fp32.add_(-update) |
|
|
|
if p.data.dtype in {torch.float16, torch.bfloat16}: |
|
p.data.copy_(p_data_fp32) |
|
|
|
return loss |
|
|