NeMo / nemo /core /optim /adafactor.py
camenduru's picture
thanks to NVIDIA ❤
7934b29
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# Most of the code here has been copied from:
# https://github.com/pytorch/fairseq/blob/main/fairseq/optim/adafactor.py
import math
import torch
from torch.optim.optimizer import Optimizer
__all__ = ['Adafactor']
class Adafactor(Optimizer):
"""Implements Adafactor algorithm.
This implementation is based on:
`Adafactor: Adaptive Learning Rates with Sublinear Memory Cost`
(see https://arxiv.org/abs/1804.04235)
Note that this optimizer internally adjusts the learning rate
depending on the *scale_parameter*, *relative_step* and
*warmup_init* options. To use a manual (external) learning rate
schedule you should set `scale_parameter=False` and
`relative_step=False`.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): external learning rate (default: None)
eps (tuple[float, float]): regularization constans for square gradient
and parameter scale respectively (default: (1e-30, 1e-3))
clip_threshold (float): threshold of root mean square of
final gradient update (default: 1.0)
decay_rate (float): coefficient used to compute running averages of square
gradient (default: -0.8)
beta1 (float): coefficient used for computing running averages of gradient
(default: None)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
scale_parameter (bool): if True, learning rate is scaled by root mean square of
parameter (default: True)
relative_step (bool): if True, time-dependent learning rate is computed
instead of external learning rate (default: True)
warmup_init (bool): time-dependent learning rate computation depends on
whether warm-up initialization is being used (default: False)
"""
def __init__(
self,
params,
lr=None,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
scale_parameter=True,
relative_step=True,
warmup_init=False,
min_step=1e-2,
):
if lr is not None and relative_step:
raise ValueError("Cannot combine manual lr and relative_step options")
if warmup_init and not relative_step:
raise ValueError("warmup_init requires relative_step=True")
self.min_step = min_step
defaults = dict(
lr=lr,
eps=eps,
clip_threshold=clip_threshold,
decay_rate=decay_rate,
beta1=beta1,
weight_decay=weight_decay,
scale_parameter=scale_parameter,
relative_step=relative_step,
warmup_init=warmup_init,
min_step=min_step,
)
super(Adafactor, self).__init__(params, defaults)
@property
def supports_memory_efficient_fp16(self):
return True
@property
def supports_flat_params(self):
return False
def _get_lr(self, param_group, param_state):
rel_step_sz = param_group["lr"]
if param_group["relative_step"]:
min_step = 1e-6 * param_state["step"] if param_group["warmup_init"] else self.min_step
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
param_scale = 1.0
if param_group["scale_parameter"]:
param_scale = max(param_group["eps"][1], param_state["RMS"])
return param_scale * rel_step_sz
def _get_options(self, param_group, param_shape):
factored = len(param_shape) >= 2
use_first_moment = param_group["beta1"] is not None
return factored, use_first_moment
def _rms(self, tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col):
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
if grad.is_sparse:
raise RuntimeError("Adafactor does not support sparse gradients.")
state = self.state[p]
grad_shape = grad.shape
factored, use_first_moment = self._get_options(group, grad_shape)
# State Initialization
if len(state) == 0:
state["step"] = 0
if use_first_moment:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(grad)
if factored:
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad)
else:
state["exp_avg_sq"] = torch.zeros_like(grad)
state["RMS"] = 0
else:
if use_first_moment:
state["exp_avg"] = state["exp_avg"].to(grad)
if factored:
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
else:
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)
p_data_fp32 = p.data
if p.data.dtype in {torch.float16, torch.bfloat16}:
p_data_fp32 = p_data_fp32.float()
state["step"] += 1
state["RMS"] = self._rms(p_data_fp32)
group["lr"] = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
update = (grad ** 2) + group["eps"][0]
if factored:
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=1.0 - beta2t)
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=1.0 - beta2t)
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t)
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
update.mul_(group["lr"])
if use_first_moment:
exp_avg = state["exp_avg"]
exp_avg.mul_(group["beta1"]).add_(update, alpha=1 - group["beta1"])
update = exp_avg
if group["weight_decay"] != 0:
p_data_fp32.add_(p_data_fp32, alpha=-group["weight_decay"] * group["lr"])
p_data_fp32.add_(-update)
if p.data.dtype in {torch.float16, torch.bfloat16}:
p.data.copy_(p_data_fp32)
return loss