NeMo / nemo /core /config /modelPT.py
camenduru's picture
thanks to NVIDIA ❤
7934b29
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Any, Dict, Optional
from omegaconf import MISSING
from nemo.core import config
from nemo.core.classes.dataset import DatasetConfig
from nemo.utils import exp_manager
@dataclass
class SchedConfig:
name: str = MISSING
min_lr: float = 0.0
last_epoch: int = -1
@dataclass
class OptimConfig:
name: str = MISSING
sched: Optional[SchedConfig] = None
@dataclass
class ModelConfig:
"""
Model component inside ModelPT
"""
# ...
train_ds: Optional[DatasetConfig] = None
validation_ds: Optional[DatasetConfig] = None
test_ds: Optional[DatasetConfig] = None
optim: Optional[OptimConfig] = None
@dataclass
class HydraConfig:
run: Dict[str, Any] = field(default_factory=lambda: {"dir": "."})
job_logging: Dict[str, Any] = field(default_factory=lambda: {"root": {"handlers": None}})
@dataclass
class NemoConfig:
name: str = MISSING
model: ModelConfig = MISSING
trainer: config.TrainerConfig = config.TrainerConfig(
strategy="ddp", enable_checkpointing=False, logger=False, log_every_n_steps=1, accelerator='gpu'
)
exp_manager: Optional[Any] = exp_manager.ExpManagerConfig()
hydra: HydraConfig = HydraConfig()
class ModelConfigBuilder:
def __init__(self, model_cfg: ModelConfig):
"""
Base class for any Model Config Builder.
A Model Config Builder is a utility class that accepts a ModelConfig dataclass,
and via a set of utility methods (that are implemented by the subclassed ModelConfigBuilder),
builds a finalized ModelConfig that can be supplied to a NemoModel dataclass as
the `model` component.
Subclasses *must* implement the private method `_finalize_cfg`.
Inside this method, they must update `self.model_cfg` with all interdependent config
options that need to be set (either updated by user explicitly or with their default value).
The updated model config must then be preserved in `self.model_cfg`.
Example:
# Create the config builder
config_builder = <subclass>ModelConfigBuilder()
# Update the components of the config that are modifiable
config_builder.set_X(X)
config_builder.set_Y(Y)
# Create a "finalized" config dataclass that will contain all the updates
# that were specified by the builder
model_config = config_builder.build()
# Use model config as is (or further update values), then create a new Model
model = nemo.<domain>.models.<ModelName>Model(cfg=model_config, trainer=Trainer())
Supported build methods:
- set_train_ds: All model configs can accept a subclass of `DatasetConfig` as their
training config. Subclasses can override this method to enable auto-complete
by replacing `Optional[DatasetConfig]` with `Optional[<subclass of DatasetConfig>]`.
- set_validation_ds: All model configs can accept a subclass of `DatasetConfig` as their
validation config. Subclasses can override this method to enable auto-complete
by replacing `Optional[DatasetConfig]` with `Optional[<subclass of DatasetConfig>]`.
- set_test_ds: All model configs can accept a subclass of `DatasetConfig` as their
test config. Subclasses can override this method to enable auto-complete
by replacing `Optional[DatasetConfig]` with `Optional[<subclass of DatasetConfig>]`.
- set_optim: A build method that supports changes to the Optimizer (and optionally,
the Scheduler) used for training the model. The function accepts two inputs -
`cfg`: A subclass of `OptimizerParams` - any OptimizerParams subclass can be used,
in order to select an appropriate Optimizer. Examples: AdamParams.
`sched_cfg`: A subclass of `SchedulerParams` - any SchedulerParams subclass can be used,
in order to select an appropriate Scheduler. Examples: CosineAnnealingParams.
Note that this argument is optional.
- build(): The method which should return a "finalized" ModelConfig dataclass.
Subclasses *should* always override this method, and update the signature
of this method with the return type of the Dataclass, so that it enables
autocomplete for the user.
Example:
def build(self) -> EncDecCTCConfig:
return super().build()
Any additional build methods must be added by subclasses of ModelConfigBuilder.
Args:
model_cfg:
"""
self.model_cfg = model_cfg
self.train_ds_cfg = None
self.validation_ds_cfg = None
self.test_ds_cfg = None
self.optim_cfg = None
def set_train_ds(self, cfg: Optional[DatasetConfig] = None):
self.model_cfg.train_ds = cfg
def set_validation_ds(self, cfg: Optional[DatasetConfig] = None):
self.model_cfg.validation_ds = cfg
def set_test_ds(self, cfg: Optional[DatasetConfig] = None):
self.model_cfg.test_ds = cfg
def set_optim(self, cfg: config.OptimizerParams, sched_cfg: Optional[config.SchedulerParams] = None):
@dataclass
class WrappedOptimConfig(OptimConfig, cfg.__class__):
pass
# Setup optim
optim_name = cfg.__class__.__name__.replace("Params", "").lower()
wrapped_cfg = WrappedOptimConfig(name=optim_name, sched=None, **vars(cfg))
if sched_cfg is not None:
@dataclass
class WrappedSchedConfig(SchedConfig, sched_cfg.__class__):
pass
# Setup scheduler
sched_name = sched_cfg.__class__.__name__.replace("Params", "")
wrapped_sched_cfg = WrappedSchedConfig(name=sched_name, **vars(sched_cfg))
wrapped_cfg.sched = wrapped_sched_cfg
self.model_cfg.optim = wrapped_cfg
def _finalize_cfg(self):
raise NotImplementedError()
def build(self) -> ModelConfig:
# validate config
self._finalize_cfg()
return self.model_cfg