|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import pytorch_lightning as pl |
|
import torch |
|
from omegaconf import OmegaConf |
|
from pytorch_lightning import seed_everything |
|
|
|
from nemo.collections.asr.models import EncDecSpeakerLabelModel |
|
from nemo.core.config import hydra_runner |
|
from nemo.utils import logging |
|
from nemo.utils.exp_manager import exp_manager |
|
|
|
""" |
|
Basic run (on GPU for 10 epochs for 2 class training): |
|
EXP_NAME=sample_run |
|
python ./speaker_reco.py --config-path='conf' --config-name='SpeakerNet_recognition_3x2x512.yaml' \ |
|
trainer.max_epochs=10 \ |
|
model.train_ds.batch_size=64 model.validation_ds.batch_size=64 \ |
|
model.train_ds.manifest_filepath="<train_manifest>" model.validation_ds.manifest_filepath="<dev_manifest>" \ |
|
model.test_ds.manifest_filepath="<test_manifest>" \ |
|
trainer.devices=1 \ |
|
model.decoder.params.num_classes=2 \ |
|
exp_manager.name=$EXP_NAME +exp_manager.use_datetime_version=False \ |
|
exp_manager.exp_dir='./speaker_exps' |
|
|
|
See https://github.com/NVIDIA/NeMo/blob/main/tutorials/speaker_tasks/Speaker_Identification_Verification.ipynb for notebook tutorial |
|
|
|
Optional: Use tarred dataset to speech up data loading. |
|
Prepare ONE manifest that contains all training data you would like to include. Validation should use non-tarred dataset. |
|
Note that it's possible that tarred datasets impacts validation scores because it drop values in order to have same amount of files per tarfile; |
|
Scores might be off since some data is missing. |
|
|
|
Use the `convert_to_tarred_audio_dataset.py` script under <NEMO_ROOT>/speech_recognition/scripts in order to prepare tarred audio dataset. |
|
For details, please see TarredAudioToClassificationLabelDataset in <NEMO_ROOT>/nemo/collections/asr/data/audio_to_label.py |
|
""" |
|
|
|
seed_everything(42) |
|
|
|
|
|
@hydra_runner(config_path="conf", config_name="SpeakerNet_verification_3x2x256.yaml") |
|
def main(cfg): |
|
|
|
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') |
|
trainer = pl.Trainer(**cfg.trainer) |
|
log_dir = exp_manager(trainer, cfg.get("exp_manager", None)) |
|
speaker_model = EncDecSpeakerLabelModel(cfg=cfg.model, trainer=trainer) |
|
|
|
|
|
if log_dir is not None: |
|
with open(os.path.join(log_dir, 'labels.txt'), 'w') as f: |
|
if speaker_model.labels is not None: |
|
for label in speaker_model.labels: |
|
f.write(f'{label}\n') |
|
|
|
trainer.fit(speaker_model) |
|
|
|
if not trainer.fast_dev_run: |
|
model_path = os.path.join(log_dir, '..', 'spkr.nemo') |
|
speaker_model.save_to(model_path) |
|
|
|
torch.distributed.destroy_process_group() |
|
if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None: |
|
if trainer.is_global_zero: |
|
trainer = pl.Trainer(devices=1, accelerator=cfg.trainer.accelerator, strategy=cfg.trainer.strategy) |
|
if speaker_model.prepare_test(trainer): |
|
trainer.test(speaker_model) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|