|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch.multiprocessing as mp |
|
from omegaconf.omegaconf import OmegaConf, open_dict |
|
from pytorch_lightning import Trainer |
|
from pytorch_lightning.plugins.environments import TorchElasticEnvironment |
|
|
|
from nemo.collections.nlp.models.language_modeling.megatron_gpt_adapter_model import MegatronGPTAdapterLearningModel |
|
from nemo.collections.nlp.parts.nlp_overrides import ( |
|
GradScaler, |
|
MegatronHalfPrecisionPlugin, |
|
NLPDDPStrategy, |
|
NLPSaveRestoreConnector, |
|
PipelineMixedPrecisionPlugin, |
|
) |
|
from nemo.core.config import hydra_runner |
|
from nemo.utils import logging |
|
from nemo.utils.exp_manager import exp_manager |
|
|
|
mp.set_start_method("spawn", force=True) |
|
|
|
""" |
|
This is the script to train an Adapter infused GPT Model for text generation. |
|
A base GPT Model is required as a starting point. This script will then insert |
|
Adapters into each Transformer layer and will train/update only these adapters |
|
during training. The base GPT Model weights will remain frozen. |
|
|
|
During training this script will only save the newly trained Adapter weights |
|
in checkpoints. At the end of training a .nemo file of Adapter weights will |
|
be saved. |
|
|
|
Usage: |
|
Assuming the base model is a 125m GPT Model, with TP=1, PP=1: |
|
a. run a training run for a base gpt nemo file: |
|
python megatron_gpt_adapter_tuning.py \ |
|
"model.data.train_ds=[PATH TO TRAINING JSONL FILE]", |
|
"model.data.validation_ds=[PATH TO VALIDATION JSONL FILE]", |
|
model.language_model_path="PATH TO BASE GPT MODEL .nemo FILE" |
|
name="NAME OF TRAINING RUN" |
|
exp_manager.exp_dir="DIR TO SAVE CHECKPOINTS and .nemo FILE", |
|
trainer.max_epochs=2 |
|
""" |
|
|
|
|
|
@hydra_runner(config_path="conf", config_name="megatron_gpt_adapter_tuning_config") |
|
def main(cfg) -> None: |
|
logging.info("\n\n************** Experiment configuration ***********") |
|
logging.info(f'\n{OmegaConf.to_yaml(cfg)}') |
|
|
|
megatron_amp_o2 = cfg.model.get('megatron_amp_O2', False) |
|
with_distributed_adam = cfg.model.optim.get('name') == 'distributed_fused_adam' |
|
|
|
plugins = [] |
|
strategy = NLPDDPStrategy( |
|
no_ddp_communication_hook=True, |
|
gradient_as_bucket_view=cfg.model.gradient_as_bucket_view, |
|
find_unused_parameters=False, |
|
) |
|
if cfg.trainer.precision in [16, 'bf16']: |
|
scaler = None |
|
if cfg.trainer.precision == 16: |
|
scaler = GradScaler( |
|
init_scale=cfg.model.get('native_amp_init_scale', 2 ** 32), |
|
growth_interval=cfg.model.get('native_amp_growth_interval', 1000), |
|
hysteresis=cfg.model.get('hysteresis', 2), |
|
) |
|
if megatron_amp_o2 and not with_distributed_adam: |
|
plugins.append(MegatronHalfPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler)) |
|
else: |
|
plugins.append(PipelineMixedPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler)) |
|
|
|
if cfg.get('cluster_type', None) == 'BCP': |
|
plugins.append(TorchElasticEnvironment()) |
|
|
|
trainer = Trainer(plugins=plugins, strategy=strategy, **cfg.trainer) |
|
exp_manager(trainer, cfg.exp_manager) |
|
|
|
|
|
with open_dict(cfg): |
|
cfg.model.precision = cfg.trainer.precision |
|
|
|
|
|
if cfg.model.get("restore_path", None): |
|
model = MegatronGPTAdapterLearningModel.restore_from( |
|
cfg.model.restore_path, cfg.model, trainer=trainer, save_restore_connector=NLPSaveRestoreConnector() |
|
) |
|
else: |
|
model = MegatronGPTAdapterLearningModel(cfg.model, trainer=trainer) |
|
|
|
trainer.fit(model) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|