|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import datetime |
|
import os |
|
|
|
from omegaconf.omegaconf import OmegaConf, open_dict |
|
from pytorch_lightning import Trainer |
|
from pytorch_lightning.callbacks.timer import Timer |
|
from pytorch_lightning.plugins.environments import TorchElasticEnvironment |
|
from pytorch_lightning.plugins.precision.native_amp import NativeMixedPrecisionPlugin |
|
from pytorch_lightning.trainer.connectors.checkpoint_connector import CheckpointConnector |
|
|
|
from nemo.collections.nlp.models.language_modeling.megatron_retro_fine_tune_model import MegatronRetroFinetuneModel |
|
from nemo.collections.nlp.parts.nlp_overrides import ( |
|
GradScaler, |
|
MegatronHalfPrecisionPlugin, |
|
NLPDDPStrategy, |
|
NLPSaveRestoreConnector, |
|
) |
|
from nemo.core.config import hydra_runner |
|
from nemo.utils import logging |
|
from nemo.utils.exp_manager import StatelessTimer, exp_manager |
|
|
|
|
|
def _modify_config(retro_cfg, cfg, add_cfg_to_tree=False): |
|
""" |
|
This function modifies the original retro pre-training config with attributes from the finetuning config (cfg). |
|
The `add_cfg_to_tree` arg adds `cfg` to the top of the yaml tree which is needed for all `hparams.yaml` files when passed as an arg to `load_from_checkpoint()`. |
|
""" |
|
OmegaConf.set_struct(retro_cfg, True) |
|
with open_dict(retro_cfg): |
|
retro_cfg.megatron_amp_O2 = cfg.model.get('megatron_amp_O2', False) |
|
retro_cfg.data = cfg.model.data |
|
retro_cfg.precision = cfg.trainer.precision |
|
retro_cfg.optim = cfg.model.optim |
|
retro_cfg.micro_batch_size = cfg.model.micro_batch_size |
|
|
|
|
|
if add_cfg_to_tree: |
|
OmegaConf.resolve(retro_cfg) |
|
retro_cfg.cfg = retro_cfg |
|
return retro_cfg |
|
|
|
|
|
def load_from_nemo(cls, cfg, trainer, retro_cfg, modify_confg_fn, save_restore_connector): |
|
retro_cfg = modify_confg_fn(retro_cfg, cfg, add_cfg_to_tree=False) |
|
model = cls.restore_from( |
|
restore_path=cfg.model.restore_path, |
|
trainer=trainer, |
|
override_config_path=retro_cfg, |
|
save_restore_connector=save_restore_connector, |
|
) |
|
return model |
|
|
|
|
|
@hydra_runner(config_path="conf", config_name="megatron_retro_finetune_config") |
|
def main(cfg) -> None: |
|
logging.info("\n\n************** Experiment configuration ***********") |
|
logging.info(f'\n{OmegaConf.to_yaml(cfg)}') |
|
|
|
|
|
|
|
|
|
megatron_amp_o2 = cfg.model.get('megatron_amp_O2', False) |
|
plugins = [] |
|
strategy = NLPDDPStrategy( |
|
no_ddp_communication_hook=True if megatron_amp_o2 else False, |
|
gradient_as_bucket_view=cfg.model.gradient_as_bucket_view, |
|
find_unused_parameters=False, |
|
timeout=datetime.timedelta(seconds=18000), |
|
) |
|
|
|
if cfg.trainer.precision in [16, 'bf16']: |
|
scaler = None |
|
if cfg.trainer.precision == 16: |
|
scaler = GradScaler( |
|
init_scale=cfg.model.get('native_amp_init_scale', 2 ** 32), |
|
growth_interval=cfg.model.get('native_amp_growth_interval', 1000), |
|
hysteresis=cfg.model.get('hysteresis', 2), |
|
) |
|
if megatron_amp_o2: |
|
plugins.append(MegatronHalfPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler)) |
|
else: |
|
plugins.append(NativeMixedPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler)) |
|
|
|
if cfg.get('cluster_type', None) == 'BCP': |
|
plugins.append(TorchElasticEnvironment()) |
|
|
|
trainer = Trainer(plugins=plugins, strategy=strategy, **cfg.trainer) |
|
exp_manager(trainer, cfg.exp_manager) |
|
|
|
|
|
resume_from_checkpoint = trainer._checkpoint_connector.resume_from_checkpoint_fit_path |
|
logging.info(f'Resuming training from checkpoint: {resume_from_checkpoint}') |
|
|
|
trainer._checkpoint_connector = CheckpointConnector(trainer, resume_from_checkpoint=resume_from_checkpoint) |
|
|
|
|
|
for idx, callback in enumerate(trainer.callbacks): |
|
if isinstance(callback, Timer): |
|
trainer.callbacks[idx] = StatelessTimer(cfg.trainer.max_time,) |
|
|
|
|
|
if cfg.model.get("restore_path", None): |
|
save_restore_connector = NLPSaveRestoreConnector() |
|
if os.path.isdir(cfg.model.restore_path): |
|
save_restore_connector.model_extracted_dir = cfg.model.restore_path |
|
|
|
model_cfg = MegatronRetroFinetuneModel.restore_from( |
|
restore_path=cfg.model.restore_path, |
|
trainer=trainer, |
|
return_config=True, |
|
save_restore_connector=save_restore_connector, |
|
) |
|
|
|
model = load_from_nemo( |
|
MegatronRetroFinetuneModel, |
|
cfg, |
|
trainer, |
|
model_cfg, |
|
modify_confg_fn=_modify_config, |
|
save_restore_connector=save_restore_connector, |
|
) |
|
else: |
|
model = MegatronRetroFinetuneModel(cfg.model, trainer=trainer) |
|
|
|
trainer.fit(model) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|