defaults: | |
- [email protected]: megatron_model_base_config | |
- [email protected]: megatron_model_base_config | |
name: megatron_ul2 | |
restore_from_path: null # used when starting from a .nemo file | |
trainer: | |
devices: 1 | |
num_nodes: 1 | |
accelerator: gpu | |
precision: 16 | |
logger: False # logger provided by exp_manager | |
enable_checkpointing: False | |
replace_sampler_ddp: False | |
max_epochs: -1 # PTL default. In practice, max_steps will be reached first. | |
max_steps: 100000 # consumed_samples = global_step * micro_batch_size * data_parallel_size * accumulate_grad_batches | |
log_every_n_steps: 10 | |
val_check_interval: 100 | |
limit_val_batches: 50 | |
limit_test_batches: 500 | |
accumulate_grad_batches: 1 | |
gradient_clip_val: 1.0 | |
exp_manager: | |
explicit_log_dir: null | |
exp_dir: null | |
name: ${name} | |
create_wandb_logger: False | |
wandb_logger_kwargs: | |
project: null | |
name: null | |
resume_if_exists: True | |
resume_ignore_no_checkpoint: True | |
create_checkpoint_callback: True | |
checkpoint_callback_params: | |
monitor: val_loss | |
save_top_k: 10 | |
mode: min | |
always_save_nemo: False # saves nemo file during validation, not implemented for model parallel | |
filename: '${name}--{val_loss:.2f}-{step}-{consumed_samples}' | |
model_parallel_size: ${multiply:${model.tensor_model_parallel_size}, ${model.pipeline_model_parallel_size}} | |
model: | |
# model parallelism | |
micro_batch_size: 4 | |
global_batch_size: 8 # will use more micro batches to reach global batch size | |
tensor_model_parallel_size: 1 | |
pipeline_model_parallel_size: 1 | |
resume_from_checkpoint: null # manually set the checkpoint file to load from | |
pipeline_model_parallel_split_rank: 0 # rank at which decoder starts. | |
# model architecture | |
make_vocab_size_divisible_by: 128 # Pad the vocab size to be divisible by this value for computation efficiency. | |
megatron_amp_O2: False # use AMP with O2 style mixed precision instead of native amp on-the-fly weight autocasting. | |
grad_allreduce_chunk_size_mb: 125 | |
grad_div_ar_fusion: True # Fuse grad division into torch.distributed.all_reduce | |
gradient_as_bucket_view: True # Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory) | |
seq_length: 512 | |
max_position_embeddings: ${.seq_length} | |
tokenizer: | |
library: 'megatron' | |
type: 'BertWordPieceCase' | |
model: null | |
vocab_file: null | |
merge_file: null | |
num_sentinel_tokens: 100 | |
sentencepiece_legacy: True # Legacy=True allows you to add special tokens to sentencepiece tokenizers. | |
# weight init | |
embedding_init_method_std: 0.02 # Standard deviation of the zero mean normal distribution used for weight initialization.') | |
# embedding dropout | |
embedding_dropout: 0.1 | |
# embedding sharing | |
share_token_embeddings: True # If True share encoder/decoder embeddings | |
share_decoder_tokens_head_embeddings: True # If True share decoder embeddings and decoder projection to logits | |
# token head | |
tokens_head_bias: True | |
# precision | |
native_amp_init_scale: 4294967296 # 2 ** 32 | |
native_amp_growth_interval: 1000 | |
fp16_lm_cross_entropy: False # Move the cross entropy unreduced loss calculation for lm head to fp16 | |
# miscellaneous | |
seed: 1234 | |
use_cpu_initialization: False # Init weights on the CPU (slow for large models) | |
apex_transformer_log_level: 30 # Python logging level displays logs with severity greater than or equal to this | |
data: | |
# Path to data must be specified by the user. | |
# can override from the CLI: "model.data.data_prefix=[.5,/raid/data/pile/my-t5_00_text_document,.5,/raid/data/pile/my-t5_01_text_document]", | |
# Or see example below: | |
# data_prefix: | |
# - .5 | |
# - /raid/data/pile/my-t5_00_text_document | |
# - .5 | |
# - /raid/data/pile/my-t5_01_text_document | |
data_prefix: ??? | |
index_mapping_dir: null # path to save index mapping .npy files, by default will save in the same location as data_prefix | |
data_impl: mmap | |
# data_impl_kwargs: # currently used only for text_mmap, csv_mmap (should be data_impl dependant) | |
# # defaults for text_memmap | |
# newline_int: 10 # byte-value of newline (Use ord('\n') to get value) | |
# header_lines: 0 # skip first N header lines | |
# workers: null # number of workers when creating missing index files (null defaults to cpu_num // 2) | |
# sort_dataset_paths: False # if True datasets will be sorted by name | |
# # defaults for csv_memmap | |
# newline_int: 10 # byte-value of newline | |
# header_lines: 1 # skip first N header lines | |
# workers: null # number of workers when creating missing index files (null defaults to cpu_num // 2) | |
# sort_dataset_paths: False # if True datasets will be sorted by name | |
# data_col: 1 # column to use for data | |
# data_sep: ',' # string to split text into columns | |
splits_string: 949,45,5 | |
seq_length: ${model.seq_length} | |
seq_length_dec: ${model.seq_length} | |
skip_warmup: True | |
num_workers: 0 | |
dataloader_type: single # cyclic | |
masked_lm_prob: 0.15 | |
extreme_masked_lm_prob: 0.5 | |
dataset_type: 'ul2' | |
short_seq_prob: 0.0 | |
max_ngram_size: 10 | |
extreme_max_ngram_size: 128 | |
extreme_min_ngram_size: 32 | |
extreme_mean_ngram_size: 64 | |
ngram_span_length_distribution: 'geometric' | |
extreme_ngram_span_length_distribution: 'truncated_normal' | |
prefix_lm_pivot_mean: 0.25 | |
mean_ngram_size: 3 | |
permutation: False | |
whole_word_masking: True | |
favor_longer_ngrams: False | |
respect_document_boundaries: True # If true, a single training exampl cannot cross document boundaries, increasing the fraction of <pad> tokens within a batch. | |
optim: | |
name: fused_adam | |
lr: 0.0001 | |
betas: | |
- 0.9 | |
- 0.999 | |
eps: 1e-8 | |
weight_decay: 0.01 | |
sched: | |
name: WarmupAnnealing | |
min_lr: 0.00001 | |
last_epoch: -1 | |
warmup_ratio: 0.01 | |