defaults: | |
- .@base_model: megatron_model_base_config | |
- .@delta_model: megatron_model_base_config | |
- .@model: megatron_model_base_config | |
name: mu_transfer_retro | |
restore_from_path: null # used when starting from a .nemo file | |
trainer: | |
devices: 2 | |
num_nodes: 1 | |
accelerator: gpu | |
precision: 16 | |
logger: False # logger provided by exp_manager | |
enable_checkpointing: False | |
replace_sampler_ddp: False | |
max_epochs: -1 # PTL default. In practice we don't usually train for more than 1 epoch. | |
max_steps: 100000 # consumed_samples = global_step * micro_batch_size * data_parallel_size * accumulate_grad_batches | |
log_every_n_steps: 10 | |
val_check_interval: 100 | |
limit_val_batches: null | |
limit_test_batches: null | |
accumulate_grad_batches: 1 | |
gradient_clip_val: 1.0 | |
exp_manager: | |
explicit_log_dir: null | |
exp_dir: null | |
name: megatron_retro | |
create_wandb_logger: False | |
wandb_logger_kwargs: | |
project: null | |
name: null | |
resume_if_exists: True | |
resume_ignore_no_checkpoint: True | |
create_checkpoint_callback: True | |
checkpoint_callback_params: | |
monitor: val_loss | |
save_top_k: 10 | |
mode: min | |
always_save_nemo: False # saves nemo file during validation, not implemented for model parallel | |
filename: 'megatron_retro--{val_loss:.2f}-{step}-{consumed_samples}' | |
model_parallel_size: ${multiply:${model.tensor_model_parallel_size}, ${model.pipeline_model_parallel_size}} | |
base_model: | |
version: 1 # indicate the retro model version | |
# model parallelism | |
micro_batch_size: 4 | |
tensor_model_parallel_size: 1 | |
pipeline_model_parallel_size: 1 # has to be one. not supporting pipeline parallel yet | |
# model architecture | |
encoder_seq_length: 2048 | |
max_position_embeddings: ${.encoder_seq_length} | |
gradient_as_bucket_view: True # Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory) | |
# retro architecture | |
chunk_size: 64 # the chunk size used to retrive | |
enc_num_layers: 2 # total number of encoder layers | |
dec_num_layers: 12 # total number of decoder layers | |
enc_cross_attention: [0] # layer numbers for cross attention in encoder | |
dec_cross_attention: [5, 8, 11] # layer numbers for chunked cross attention in decoder | |
add_position_embedding: False # whether use the absolute position encoding | |
make_vocab_size_divisible_by: 128 # Pad the vocab size to be divisible by this value for computation efficiency. | |
pre_process: True # add embedding | |
post_process: True # add pooler | |
bert_binary_head: True # BERT binary head | |
megatron_amp_O2: False # use AMP with O2 style mixed precision instead of native amp on-the-fly weight autocasting. | |
grad_allreduce_chunk_size_mb: 125 | |
tokenizer: | |
library: 'megatron' | |
type: 'GPT2BPETokenizer' | |
model: null | |
vocab_file: null | |
merge_file: null | |
delimiter: null # only used for tabular tokenizer | |
# precision | |
native_amp_init_scale: 4294967296 # 2 ** 32 | |
native_amp_growth_interval: 1000 | |
fp16_lm_cross_entropy: False # Move the cross entropy unreduced loss calculation for lm head to fp16 | |
# miscellaneous | |
seed: 1234 | |
delta_model: | |
version: 1 # indicate the retro model version | |
# model parallelism | |
micro_batch_size: 4 | |
tensor_model_parallel_size: 1 | |
pipeline_model_parallel_size: 1 # has to be one. not supporting pipeline parallel yet | |
# model architecture | |
encoder_seq_length: 2048 | |
max_position_embeddings: ${.encoder_seq_length} | |
gradient_as_bucket_view: True # Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory) | |
# retro architecture | |
chunk_size: 64 # the chunk size used to retrive | |
enc_num_layers: 2 # total number of encoder layers | |
dec_num_layers: 12 # total number of decoder layers | |
enc_cross_attention: [0] # layer numbers for cross attention in encoder | |
dec_cross_attention: [5, 8, 11] # layer numbers for chunked cross attention in decoder | |
add_position_embedding: False # whether use the absolute position encoding | |
make_vocab_size_divisible_by: 128 # Pad the vocab size to be divisible by this value for computation efficiency. | |
pre_process: True # add embedding | |
post_process: True # add pooler | |
bert_binary_head: True # BERT binary head | |
megatron_amp_O2: False # use AMP with O2 style mixed precision instead of native amp on-the-fly weight autocasting. | |
grad_allreduce_chunk_size_mb: 125 | |
tokenizer: | |
library: 'megatron' | |
type: 'GPT2BPETokenizer' | |
model: null | |
vocab_file: null | |
merge_file: null | |
delimiter: null # only used for tabular tokenizer | |
# precision | |
native_amp_init_scale: 4294967296 # 2 ** 32 | |
native_amp_growth_interval: 1000 | |
fp16_lm_cross_entropy: False # Move the cross entropy unreduced loss calculation for lm head to fp16 | |
# miscellaneous | |
seed: 1234 | |
model: | |
version: 1 # indicate the retro model version | |
shape_file: null # the path to the shape file | |
# model parallelism | |
micro_batch_size: 4 | |
tensor_model_parallel_size: 1 | |
pipeline_model_parallel_size: 1 # has to be one. not supporting pipeline parallel yet | |
# model architecture | |
encoder_seq_length: 2048 | |
max_position_embeddings: ${.encoder_seq_length} | |
gradient_as_bucket_view: True # Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory) | |
dump_debug_info: False # dump out the debug information | |
dump_debug_info_to_file: False # dump out the debug information to files | |
# retro architecture | |
chunk_size: 64 # the chunk size used to retrive | |
enc_num_layers: 2 # total number of encoder layers | |
dec_num_layers: 12 # total number of decoder layers | |
enc_cross_attention: [0] # layer numbers for cross attention in encoder | |
dec_cross_attention: [5, 8, 11] # layer numbers for chunked cross attention in decoder | |
add_position_embedding: False # whether use the absolute position encoding | |
make_vocab_size_divisible_by: 128 # Pad the vocab size to be divisible by this value for computation efficiency. | |
pre_process: True # add embedding | |
post_process: True # add pooler | |
bert_binary_head: True # BERT binary head | |
megatron_amp_O2: False # use AMP with O2 style mixed precision instead of native amp on-the-fly weight autocasting. | |
grad_allreduce_chunk_size_mb: 125 | |
activations_checkpoint_granularity: null # 'selective' or 'full' | |
activations_checkpoint_method: null # 'uniform', 'block', not used with 'selective' | |
# 'uniform' divides the total number of transformer layers and checkpoints the input activation | |
# of each chunk at the specified granularity | |
# 'block' checkpoints the specified number of layers per pipeline stage at the specified granularity | |
activations_checkpoint_num_layers: null # not used with 'selective' | |
# when using 'uniform' this creates groups of transformer layers to checkpoint. Usually set to 1. Increase to save more memory. | |
# when using 'block' this this will checkpoint the first activations_checkpoint_num_layers per pipeline stage. | |
tokenizer: | |
library: 'megatron' | |
type: 'GPT2BPETokenizer' | |
model: null | |
vocab_file: null | |
merge_file: null | |
delimiter: null # only used for tabular tokenizer | |
# precision | |
native_amp_init_scale: 4294967296 # 2 ** 32 | |
native_amp_growth_interval: 1000 | |
fp16_lm_cross_entropy: False # Move the cross entropy unreduced loss calculation for lm head to fp16 | |
# miscellaneous | |
seed: 1234 | |
data: | |
# Path to data must be specified by the user. | |
# can override from the CLI: "model.data.data_prefix=[.5,/raid/data/pile/my-gpt3_00_text_document,.5,/raid/data/pile/my-gpt3_01_text_document]", | |
# Or see example below: | |
# data_prefix: | |
# - .5 | |
# - /raid/data/pile/my-gpt3_00_text_document | |
# - .5 | |
# - /raid/data/pile/my-gpt3_01_text_document | |
data_prefix: ??? # list of training datasets | |
knn_index: ??? # list of KNN map index files | |
retrieval_prefix: ??? # a singe path to retrieval data | |
index_mapping_dir: null # path to save index mapping .npy files, by default will save in the same location as data_prefix | |
data_impl: retmmap # for retro model, this is the only allowed type | |
splits_string: 900,50,50 | |
seq_length: ${model.encoder_seq_length} # must be multiple of the chunk_size in your dataset | |
skip_warmup: True | |
num_workers: 0 | |
dataloader_type: single # cyclic | |
neighbors: 2 # number of retrieved neighbors | |
optim: | |
name: muadamw | |
lr: 1e-4 | |
weight_decay: 0.01 | |
betas: | |
- 0.9 | |
- 0.98 | |
sched: | |
name: CosineAnnealing | |
warmup_steps: 500 | |
constant_steps: 50000 | |
min_lr: 1e-5 | |