|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
# Preparing the Tokenizer for the dataset |
|
Use the `process_asr_text_tokenizer.py` script under <NEMO_ROOT>/scripts/tokenizers/ in order to prepare the tokenizer. |
|
|
|
```sh |
|
python <NEMO_ROOT>/scripts/tokenizers/process_asr_text_tokenizer.py \ |
|
--manifest=<path to train manifest files, seperated by commas> |
|
OR |
|
--data_file=<path to text data, seperated by commas> \ |
|
--data_root="<output directory>" \ |
|
--vocab_size=<number of tokens in vocabulary> \ |
|
--tokenizer=<"spe" or "wpe"> \ |
|
--no_lower_case \ |
|
--spe_type=<"unigram", "bpe", "char" or "word"> \ |
|
--spe_character_coverage=1.0 \ |
|
--log |
|
``` |
|
|
|
# [FOR MMI LOSS ONLY] Building a token-level LM for the model training |
|
```sh |
|
python experimental/k2/make_token_lm.py \ |
|
--manifest=<comma separated list of manifest files> \ |
|
--tokenizer_dir=<path to directory of tokenizer (not full path to the vocab file!)> \ |
|
--tokenizer_type=<either `bpe` or `wpe`> \ |
|
--output_file=<path to store the token LM> \ |
|
--lm_builder=<NEMO_ROOT>/scripts/asr_language_modeling/ngram_lm/make_phone_lm.py \ |
|
--ngram_order=2 \ |
|
--do_lowercase |
|
``` |
|
|
|
# Training the model |
|
```sh |
|
python speech_to_text_ctc_bpe.py \ |
|
# (Optional: --config-path=<path to dir of configs> --config-name=<name of config without .yaml>) \ |
|
model.train_ds.manifest_filepath=<path to train manifest> \ |
|
model.validation_ds.manifest_filepath=<path to val/test manifest> \ |
|
model.tokenizer.dir=<path to directory of tokenizer (not full path to the vocab file!)> \ |
|
model.tokenizer.type=<either `bpe` or `wpe`> \ |
|
trainer.gpus=-1 \ |
|
trainer.accelerator="ddp" \ |
|
trainer.max_epochs=100 \ |
|
model.optim.name="adamw" \ |
|
model.optim.lr=0.001 \ |
|
model.optim.betas=[0.9,0.999] \ |
|
model.optim.weight_decay=0.0001 \ |
|
model.optim.sched.warmup_steps=2000 |
|
exp_manager.create_wandb_logger=True \ |
|
exp_manager.wandb_logger_kwargs.name="<Name of experiment>" \ |
|
exp_manager.wandb_logger_kwargs.project="<Name of project>" \ |
|
model.graph_module_cfg.criterion_type=<either `ml` or `map`> \ |
|
model.graph_module_cfg.loss_type=<either `ctc` or `mmi`> \ |
|
model.graph_module_cfg.transcribe_training=False \ |
|
model.graph_module_cfg.split_batch_size=0 \ |
|
model.graph_module_cfg.background_cfg.topo_type=<`default` or `compact` or `shared_blank` or `minimal`> \ |
|
model.graph_module_cfg.background_cfg.topo_with_self_loops=True \ |
|
``` |
|
|
|
# If graph_module_cfg.criterion_type=`map`, you can set the following parameters: |
|
model.graph_module_cfg.background_cfg.token_lm=<path to the token LM> \ |
|
model.graph_module_cfg.background_cfg.intersect_pruned=False \ |
|
model.graph_module_cfg.background_cfg.boost_coeff=0.0 |
|
""" |
|
import pytorch_lightning as pl |
|
from omegaconf import OmegaConf |
|
|
|
from nemo.collections.asr.models.configs.k2_sequence_models_config import EncDecK2SeqModelConfig |
|
from nemo.collections.asr.models.k2_sequence_models import EncDecK2SeqModelBPE |
|
from nemo.core.config import hydra_runner |
|
from nemo.utils import logging |
|
from nemo.utils.exp_manager import exp_manager |
|
|
|
|
|
@hydra_runner(config_path="experimental/k2/conf/citrinet", config_name="citrinet_mmi_1024.yaml") |
|
def main(cfg: EncDecK2SeqModelConfig): |
|
logging.info(f"Hydra config: {OmegaConf.to_yaml(cfg)}") |
|
|
|
trainer = pl.Trainer(**cfg.trainer) |
|
exp_manager(trainer, cfg.get("exp_manager", None)) |
|
asr_model = EncDecK2SeqModelBPE(cfg=cfg.model, trainer=trainer) |
|
|
|
|
|
asr_model.maybe_init_from_pretrained_checkpoint(cfg) |
|
|
|
trainer.fit(asr_model) |
|
|
|
if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None: |
|
if asr_model.prepare_test(trainer): |
|
trainer.test(asr_model) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|