|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
# Training the model |
|
|
|
Basic run (on CPU for 50 epochs): |
|
python examples/asr/asr_transducer/speech_to_text_rnnt.py \ |
|
# (Optional: --config-path=<path to dir of configs> --config-name=<name of config without .yaml>) \ |
|
model.train_ds.manifest_filepath="<path to manifest file>" \ |
|
model.validation_ds.manifest_filepath="<path to manifest file>" \ |
|
trainer.devices=1 \ |
|
trainer.accelerator='cpu' \ |
|
trainer.max_epochs=50 |
|
|
|
|
|
Add PyTorch Lightning Trainer arguments from CLI: |
|
python speech_to_text_rnnt.py \ |
|
... \ |
|
+trainer.fast_dev_run=true |
|
|
|
Hydra logs will be found in "$(./outputs/$(date +"%y-%m-%d")/$(date +"%H-%M-%S")/.hydra)" |
|
PTL logs will be found in "$(./outputs/$(date +"%y-%m-%d")/$(date +"%H-%M-%S")/lightning_logs)" |
|
|
|
Override some args of optimizer: |
|
python speech_to_text_rnnt.py \ |
|
--config-path="experimental/contextnet_rnnt" \ |
|
--config-name="config_rnnt" \ |
|
model.train_ds.manifest_filepath="./an4/train_manifest.json" \ |
|
model.validation_ds.manifest_filepath="./an4/test_manifest.json" \ |
|
trainer.devices=2 \ |
|
trainer.precision=16 \ |
|
trainer.max_epochs=2 \ |
|
model.optim.betas=[0.8,0.5] \ |
|
model.optim.weight_decay=0.0001 |
|
|
|
Override optimizer entirely |
|
python speech_to_text_rnnt.py \ |
|
--config-path="experimental/contextnet_rnnt" \ |
|
--config-name="config_rnnt" \ |
|
model.train_ds.manifest_filepath="./an4/train_manifest.json" \ |
|
model.validation_ds.manifest_filepath="./an4/test_manifest.json" \ |
|
trainer.devices=2 \ |
|
trainer.precision=16 \ |
|
trainer.max_epochs=2 \ |
|
model.optim.name=adamw \ |
|
model.optim.lr=0.001 \ |
|
~model.optim.args \ |
|
+model.optim.args.betas=[0.8,0.5]\ |
|
+model.optim.args.weight_decay=0.0005 |
|
|
|
# Fine-tune a model |
|
|
|
For documentation on fine-tuning this model, please visit - |
|
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/configs.html#fine-tuning-configurations |
|
|
|
""" |
|
|
|
import pytorch_lightning as pl |
|
from omegaconf import OmegaConf |
|
|
|
from nemo.collections.asr.models import EncDecRNNTModel |
|
from nemo.core.config import hydra_runner |
|
from nemo.utils import logging |
|
from nemo.utils.exp_manager import exp_manager |
|
|
|
|
|
@hydra_runner(config_path="experimental/contextnet_rnnt", config_name="config_rnnt") |
|
def main(cfg): |
|
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') |
|
|
|
trainer = pl.Trainer(**cfg.trainer) |
|
exp_manager(trainer, cfg.get("exp_manager", None)) |
|
asr_model = EncDecRNNTModel(cfg=cfg.model, trainer=trainer) |
|
|
|
|
|
asr_model.maybe_init_from_pretrained_checkpoint(cfg) |
|
|
|
trainer.fit(asr_model) |
|
|
|
if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None: |
|
if asr_model.prepare_test(trainer): |
|
trainer.test(asr_model) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|