File size: 37,936 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 |
{
"cells": [
{
"cell_type": "markdown",
"id": "bfe7f0e7",
"metadata": {},
"source": [
"# Modifying FastPitch to Train on a Chinese and English Bilingual Dataset\n",
"\n",
"This notebook is designed to provide a guide on how to train FastPitch on a Chinese and English bilingual dataset from scratch as part of the TTS pipeline. It contains the following sections:\n",
" 1. **Introduction**: FastPitch and HiFi-GAN in NeMo\n",
" 2. **Dataset Preparation**: How to prepare Chinese dataset for FastPitch\n",
" 3. **Training**: Example of FastPitch training and evaluation\n",
" 4. **(TODO) Finetuning from LJSpeech Acoustic Model**: Improving English speech quality by finetuning LJ Speech pretrained model"
]
},
{
"cell_type": "markdown",
"id": "d4623c99",
"metadata": {},
"source": [
"# License\n",
"\n",
"> Copyright 2023 NVIDIA. All Rights Reserved.\n",
"> \n",
"> Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"> you may not use this file except in compliance with the License.\n",
"> You may obtain a copy of the License at\n",
"> \n",
"> http://www.apache.org/licenses/LICENSE-2.0\n",
"> \n",
"> Unless required by applicable law or agreed to in writing, software\n",
"> distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"> WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"> See the License for the specific language governing permissions and\n",
"> limitations under the License."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2406ae3b",
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL).\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator).\n",
"4. Run this cell to set up dependencies.\n",
"5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect.\n",
"\"\"\"\n",
"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"## Install dependencies\n",
"# !apt-get install sox libsndfile1 ffmpeg\n",
"# !pip install wget text-unidecode matplotlib>=3.3.2\n",
"\n",
"## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"# !python -m pip install \"git+https://github.com/NVIDIA/NeMo.git@${BRANCH}#egg=nemo_toolkit[all]\"\n",
"\n",
"## Install pynini\n",
"# !wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/nemo_text_processing/install_pynini.sh\n",
"# !bash install_pynini.sh\n",
"\n",
"# !pip install opencc-python-reimplemented\n",
"\n",
"\"\"\"\n",
"Remember to restart the runtime for the kernel to pick up any upgraded packages (e.g. matplotlib)!\n",
"Alternatively, you can uncomment the exit() below to crash and restart the kernel, in the case\n",
"that you want to use the \"Run All Cells\" (or similar) option.\n",
"\"\"\"\n",
"# exit()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d9fa8367",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import nemo\n",
"import torch\n",
"import librosa\n",
"import numpy as np\n",
"from pathlib import Path\n",
"from tqdm.notebook import tqdm"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "25f2b755",
"metadata": {},
"outputs": [],
"source": [
"# let's download the files we need to run this tutorial\n",
"!mkdir -p NeMoChineseTTS\n",
"!cd NeMoChineseTTS && wget https://raw.githubusercontent.com/nvidia/NeMo/$BRANCH/scripts/tts_dataset_files/zh/pinyin_dict_nv_22.10.txt\n",
"!cd NeMoChineseTTS && wget https://raw.githubusercontent.com/nvidia/NeMo/$BRANCH/scripts/dataset_processing/tts/sfbilingual/get_data.py\n",
"!cd NeMoChineseTTS && wget https://raw.githubusercontent.com/nvidia/NeMo/$BRANCH/scripts/dataset_processing/tts/sfbilingual/ds_conf/ds_for_fastpitch_align.yaml\n",
"!cd NeMoChineseTTS && wget https://raw.githubusercontent.com/nvidia/NeMo/$BRANCH/examples/tts/fastpitch.py\n",
"!cd NeMoChineseTTS && wget https://raw.githubusercontent.com/nvidia/NeMo/$BRANCH/examples/tts/hifigan_finetune.py\n",
"!cd NeMoChineseTTS && wget https://raw.githubusercontent.com/nvidia/NeMo/$BRANCH/scripts/dataset_processing/tts/extract_sup_data.py\n",
"!cd NeMoChineseTTS && wget https://raw.githubusercontent.com/nvidia/NeMo/$BRANCH/scripts/dataset_processing/tts/generate_mels.py\n",
"!cd NeMoChineseTTS && wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/tts/conf/zh/fastpitch_align_22050.yaml\n",
"!cd NeMoChineseTTS && wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/tts/conf/hifigan/hifigan.yaml\n",
"!cd NeMoChineseTTS && mkdir -p model/train_ds && cd model/train_ds && wget https://raw.githubusercontent.com/nvidia/NeMo/$BRANCH/examples/tts/conf/hifigan/model/train_ds/train_ds_finetune.yaml\n",
"!cd NeMoChineseTTS && mkdir -p model/validation_ds && cd model/validation_ds && wget https://raw.githubusercontent.com/nvidia/NeMo/$BRANCH/examples/tts/conf/hifigan/model/validation_ds/val_ds_finetune.yaml\n",
"!cd NeMoChineseTTS && mkdir -p model/generator && cd model/generator && wget https://raw.githubusercontent.com/nvidia/NeMo/$BRANCH/examples/tts/conf/hifigan/model/generator/v1.yaml"
]
},
{
"cell_type": "markdown",
"id": "fe046c98",
"metadata": {},
"source": [
"# Introduction"
]
},
{
"cell_type": "markdown",
"id": "fb151217",
"metadata": {},
"source": [
"### FastPitch\n",
"\n",
"FastPitch is non-autoregressive model for mel-spectrogram generation based on FastSpeech, conditioned on fundamental frequency contours. For more details about model, please refer to the original [paper](https://ieeexplore.ieee.org/abstract/document/9413889). Original [FastPitch model](https://ieeexplore.ieee.org/abstract/document/9413889) uses an external Tacotron 2 model trained on LJSpeech-1.1 to extract training alignments and estimate durations of input symbols. This implementation of FastPitch is based on [Deep Learning Examples](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/FastPitch), which uses an alignment mechanism proposed in [RAD-TTS](https://openreview.net/pdf?id=0NQwnnwAORi) and extended in [TTS Aligner](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9747707).\n",
"\n",
"For more information on training a basic FastPitch model, please refer to [FastPitch_MixerTTS_Training.ipynb](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tts/FastPitch_MixerTTS_Training.ipynb) tutorial.\n",
"\n",
"### HiFi-GAN\n",
"HiFi-GAN is a generative adversarial network (GAN) model that generates audio from mel spectrograms. The generator uses transposed convolutions to upsample mel spectrograms to audio. For more details about the model, please refer to the original [paper](https://arxiv.org/abs/2010.05646). NeMo re-implementation of HiFi-GAN can be found [here](https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/tts/models/hifigan.py)."
]
},
{
"cell_type": "markdown",
"id": "85ac741a",
"metadata": {},
"source": [
"# Dataset Preparation"
]
},
{
"cell_type": "markdown",
"id": "3e37c09f",
"metadata": {},
"source": [
"We will show example of preprocessing and training using SF Bilingual Speech TTS Dataset ([link](https://catalog.ngc.nvidia.com/orgs/nvidia/resources/sf_bilingual_speech_zh_en)). The dataset contains about 2,740 bilingual audio samples of a single female speaker and their corresponding text transcripts, each of them is an audio of around 5-6 seconds and have a total length of approximately 4.5 hours. The SF Bilingual Speech Dataset is published in NGC registry with CC BY-NC 4.0 license. Please review details from the above link.\n",
"\n",
"In this section, we will cover:\n",
"1. Installing NGC Registry CLI\n",
"2. Downloading SFSpeech Dataset\n",
"3. Creating Data Manifests\n",
"4. Phonemization\n",
"5. Creating Supplementary Data"
]
},
{
"cell_type": "markdown",
"id": "402e2494",
"metadata": {},
"source": [
"## 1. Installing NGC Registry CLI\n",
"You will need to install the [NGC registry CLI](https://docs.nvidia.com/ngc/ngc-overview/index.html#installing-ngc-registry-cli) to download SF Bilingual Speech Dataset. In general, you will need to,\n",
"1. Log in to your enterprise account on the NGC website (https://ngc.nvidia.com).\n",
"2. In the top right corner, click your user account icon and select **Setup**, then click **Downloads** under **CLI** from the Setup page.\n",
"3. From the CLI Install page, click the **Windows**, **Linux**, or **macOS** tab, according to the platform from which you will be running NGC Registry CLI.\n",
"4. Follow the instructions to install the CLI.\n",
"5. Verify the installation by entering `ngc --version`. The output should be \"`NGC CLI x.y.z`\" where x.y.z indicates the version."
]
},
{
"cell_type": "markdown",
"id": "1ae6f9d3",
"metadata": {},
"source": [
"Below bash script demonstrate basic steps of NGC Registry CLI installation,"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a70e841e",
"metadata": {},
"outputs": [],
"source": [
"%%bash\n",
"# https://ngc.nvidia.com/setup/installers/cli\n",
"rm -rf ngc-cli\n",
"wget --content-disposition \"https://ngc.nvidia.com/downloads/ngccli_linux.zip\" && unzip ngccli_linux.zip && chmod u+x ngc-cli/ngc\n",
"find ngc-cli/ -type f -exec md5sum {} + | LC_ALL=C sort | md5sum -c ngc-cli.md5\n",
"rm ngccli_linux.zip ngc-cli.md5"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b11bd311",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.environ[\"PATH\"] = f\"{os.getcwd()}/ngc-cli:{os.getenv('PATH', '')}\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "305f7c0b",
"metadata": {},
"outputs": [],
"source": [
"!echo $PATH"
]
},
{
"cell_type": "markdown",
"id": "fe4feb11",
"metadata": {},
"source": [
"### Note: You must configure NGC CLI for your use by running `ngc config set` so that you can run the commands."
]
},
{
"cell_type": "markdown",
"id": "ab0e2df7",
"metadata": {},
"source": [
"Here is the example of configuring NGC CLI,\n",
"``` bash\n",
"$ ngc config set\n",
"Enter API key [no-apikey]. Choices: [<VALID_APIKEY>, 'no-apikey']: <paste_your_API_key_here>\n",
"Enter CLI output format type [ascii]. Choices: [ascii, csv, json]:\n",
"Enter org [no-org]. Choices: ['<your_user_hashcode>']: <paste_your_user_hashcode_here> or leave it empty.\n",
"Enter team [no-team]. Choices: ['no-team']:\n",
"Enter ace [no-ace]. Choices: ['no-ace']:\n",
"Successfully saved NGC configuration to /root/.ngc/config\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "da7d6856",
"metadata": {},
"source": [
"## 2. Downloading SFSpeech Dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f11ba1e5",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!cd NeMoChineseTTS && mkdir DataChinese && \\\n",
" cd DataChinese && \\\n",
" ngc registry resource download-version \"nvidia/sf_bilingual_speech_zh_en:v1\" && \\\n",
" cd sf_bilingual_speech_zh_en_vv1 && \\\n",
" unzip SF_bilingual.zip"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "df3fb1ed",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# DataChineseTTS directory looks like\n",
"!ls NeMoChineseTTS/DataChinese/sf_bilingual_speech_zh_en_vv1/SF_bilingual"
]
},
{
"cell_type": "markdown",
"id": "9cbbe658",
"metadata": {},
"source": [
"## 3. Creating Data Manifests \n",
"\n",
"We've created `scripts/dataset_processing/tts/sfbilingual/get_data.py` script that reads the `DataChinese/SF_bilingual/text_SF.txt` provided with the dataset and generates the following fields per each datapoint:\n",
"1. `audio_filepath`: location of the wav file;\n",
"2. `duration`: duration of the wav file;\n",
"3. `text`: original text;\n",
"4. `normalized_text`: normalized text through our text normalization pipline.\n",
" \n",
"Please refer to [sfspeech-chinese-english-bilingual-speech](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/tts/datasets.html#sfspeech-chinese-english-bilingual-speech) for more details about the SFSpeech dataset. \n",
"\n",
"You can run the below command to obtain the final manifests, `train_manifest.json`, `val_manifest.json` and `test_manifest.json`. This command splits 1% datapoints to validation set, 1% to test set, and the remaining 98% to training set. **Note** that this script would take sometime to process and normalize the entire dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "15a8cdab",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!cd NeMoChineseTTS && python get_data.py \\\n",
" --data-root ./DataChinese/sf_bilingual_speech_zh_en_vv1/SF_bilingual/ \\\n",
" --manifests-path ./ \\\n",
" --val-size 0.005 \\\n",
" --test-size 0.01"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2996e62b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# generated JSON manifests\n",
"!ls NeMoChineseTTS/*.json"
]
},
{
"cell_type": "markdown",
"id": "40d575fd",
"metadata": {},
"source": [
"## 4. Phonemization\n",
"\n",
"The pronunciation of a Chinese sentence can be represented as a string of phones. We would first convert a sentence into a pinyin sequences by using pypinyin library. Then we use a pre-defined pinyin-to-phoneme dict to convert them into phonemes. For English words in the sentences, we would directly use letters as input units."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63f58abf",
"metadata": {},
"outputs": [],
"source": [
"print(\"text: 我今天去了Apple Store, 买了一个iPhone。\")\n",
"print(\"pinyin: 'wo3', 'jin1', 'tian1', 'qu4', 'le5', 'A', 'p', 'p', 'l', 'e', ' ', 'S', 't', 'o', 'r', 'e', ',', ' ', 'mai3', 'le5', 'yi2', 'ge4', 'i', 'P', 'h', 'o', 'n', 'e', '。'\")"
]
},
{
"cell_type": "markdown",
"id": "fee48fa8",
"metadata": {},
"source": [
"The original JSON dataset split generated from `get_data.py` only contains text/grapheme inputs. We recommend using phonemes as well to obtain better quality of synthesized audios. The tutorial uses Chinese phonemes and English letters as modeling unit by default."
]
},
{
"cell_type": "markdown",
"id": "93cb9b3a",
"metadata": {},
"source": [
"## 5. Extracting Supplementary Data\n",
"\n",
"As mentioned in the [FastPitch and MixerTTS training tutorial](FastPitch_MixerTTS_Training.ipynb) - To accelerate and stabilize our training, we also need to extract pitch for every audio, estimate pitch statistics (mean, std, min, and max). To do this, all we need to do is iterate over our data one time, via `extract_sup_data.py` script.\n",
"\n",
"**Note**: This is an optional step, if skipped, it will be automatically executed within the first epoch of training FastPitch.\n",
"\n",
"The configuration remains the same as described in `scripts/dataset_processing/tts/sfbilingual/ds_conf/ds_for_fastpitch_align.yaml`, except that `phoneme_dict_path` should point to `pinyin_dict_nv_22.10.txt` in this tutorial. Note that there is no need to specify `whitelist_path` config anymore from NeMo Release 1.17.0 because it has been moved to a new dependency repo https://github.com/NVIDIA/NeMo-text-processing and it has been applied implicitly."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "039c7d49",
"metadata": {},
"outputs": [],
"source": [
"!cd NeMoChineseTTS && python extract_sup_data.py \\\n",
" --config-path . \\\n",
" --config-name ds_for_fastpitch_align.yaml \\\n",
" manifest_filepath=train_manifest.json \\\n",
" sup_data_path=sup_data \\\n",
" phoneme_dict_path=pinyin_dict_nv_22.10.txt \\\n",
" ++dataloader_params.num_workers=4"
]
},
{
"cell_type": "markdown",
"id": "fdf26d61",
"metadata": {},
"source": [
"After running the above command line, you will observe a new folder `NeMoChineseTTS/sup_data/pitch` and printouts of pitch statistics like below. Specify these values to the FastPitch training configurations. We will be there in the following section.\n",
"```bash\n",
"PITCH_MEAN=226.75924682617188, PITCH_STD=58.773109436035156\n",
"PITCH_MIN=65.4063949584961, PITCH_MAX=1986.977294921875\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "e260190a",
"metadata": {},
"source": [
"# Training"
]
},
{
"cell_type": "markdown",
"id": "6319a83d",
"metadata": {},
"source": [
"Before we train our model, let's define model config. Most of the model config stays the same as defined here: `examples/tts/conf/zh/fastpitch_align_22050.yaml`, except that in this tutorial,\n",
"1. `phoneme_dict_path` should point to `pinyin_dict_nv_22.10.txt`;\n",
"2. `pitch_mean` and `pitch_std` should be updated with the values estimated by the above `extract_sup_data.py` script.\n",
"\n",
"If you are using Weights and Biases, you may need to login first. More details [here](https://docs.wandb.ai/ref/cli/wandb-login)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ae8a960f",
"metadata": {
"tags": [
"parameters"
]
},
"outputs": [],
"source": [
"!wandb login #paste_wandb_apikey_here"
]
},
{
"cell_type": "markdown",
"id": "35f2f667",
"metadata": {},
"source": [
"Now we are ready for training our model! Let's try to train FastPitch. Copy and Paste the `PITCH_MEAN` and `PITCH_STD` from previous steps to overide `pitch_mean` and `pitch_std` configs below."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "af763ead",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!cd NeMoChineseTTS && CUDA_VISIBLE_DEVICES=0 python fastpitch.py --config-path . --config-name fastpitch_align_22050 \\\n",
" model.train_ds.dataloader_params.batch_size=32 \\\n",
" model.validation_ds.dataloader_params.batch_size=32 \\\n",
" train_dataset=train_manifest.json \\\n",
" validation_datasets=val_manifest.json \\\n",
" sup_data_path=sup_data \\\n",
" exp_manager.exp_dir=resultChineseTTS \\\n",
" trainer.max_epochs=1 \\\n",
" trainer.check_val_every_n_epoch=1 \\\n",
" pitch_mean=226.75924682617188 \\\n",
" pitch_std=58.773109436035156 \\\n",
" phoneme_dict_path=pinyin_dict_nv_22.10.txt \\\n",
" +exp_manager.create_wandb_logger=true \\\n",
" +exp_manager.wandb_logger_kwargs.name=\"tutorial\" \\\n",
" +exp_manager.wandb_logger_kwargs.project=\"ChineseTTS\""
]
},
{
"cell_type": "markdown",
"id": "d478a420",
"metadata": {},
"source": [
"Note:\n",
"1. We use `CUDA_VISIBLE_DEVICES=0` to limit training to single GPU.\n",
"2. For debugging you may also add the following flags: `HYDRA_FULL_ERROR=1`, `CUDA_LAUNCH_BLOCKING=1`\n",
"\n",
"**Note**: We've limited the above run to 1 epoch only, so we can validate the implementation within the scope of this tutorial. We recommend around 5000 epochs when training FastPitch from scratch."
]
},
{
"cell_type": "markdown",
"id": "bb9375de",
"metadata": {},
"source": [
"## Evaluating FastPitch + pretrained HiFi-GAN\n",
"\n",
"Let's evaluate the quality of the FastPitch model generated so far using a HiFi-GAN model pre-trained on English."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f28ecb25",
"metadata": {},
"outputs": [],
"source": [
"import IPython.display as ipd\n",
"from nemo.collections.tts.models import HifiGanModel, FastPitchModel\n",
"from matplotlib.pyplot import imshow\n",
"from matplotlib import pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "93df3197",
"metadata": {},
"outputs": [],
"source": [
"test = \"GOOGLE也計畫讓社交網路技術成為ANDROID未來版本的要項。\"\n",
"test_id = \"com_SF_ce73\"\n",
"data_path = \"NeMoChineseTTS/DataChinese/sf_bilingual_speech_zh_en_vv1/SF_bilingual/wavs/\" # path to dataset folder with wav files from original dataset\n",
"seed = 1234"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "53434f70",
"metadata": {},
"outputs": [],
"source": [
"def evaluate_spec_fastpitch_ckpt(spec_gen_model, v_model, test):\n",
" with torch.no_grad():\n",
" torch.manual_seed(seed)\n",
" torch.cuda.manual_seed(seed)\n",
" torch.backends.cudnn.enabled = True\n",
" torch.backends.cudnn.benchmark = False\n",
" parsed = spec_gen_model.parse(str_input=test, normalize=True)\n",
" spectrogram = spec_gen_model.generate_spectrogram(tokens=parsed)\n",
" print(spectrogram.size())\n",
" audio = v_model.convert_spectrogram_to_audio(spec=spectrogram)\n",
"\n",
" spectrogram = spectrogram.to('cpu').numpy()[0]\n",
" audio = audio.to('cpu').numpy()[0]\n",
" audio = audio / np.abs(audio).max()\n",
" return audio, spectrogram"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "77a88aa9",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# load fastpitch and hifigan models\n",
"import glob, os\n",
"fastpitch_model_path = sorted(\n",
" glob.glob(\"NeMoChineseTTS/resultChineseTTS/FastPitch/*/checkpoints/FastPitch.nemo\"), \n",
" key=os.path.getmtime\n",
")[-1] # path_to_fastpitch_nemo_or_ckpt\n",
"hfg_ngc = \"tts_en_lj_hifigan_ft_mixerttsx\" # pretrained hifigan from https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_hifigan/versions/1.6.0/files/tts_en_lj_hifigan_ft_mixerttsx.nemo\n",
"\n",
"vocoder_model = HifiGanModel.from_pretrained(hfg_ngc, strict=False).eval().cuda()\n",
"if \".nemo\" in fastpitch_model_path:\n",
" spec_gen_model = FastPitchModel.restore_from(fastpitch_model_path).eval().cuda()\n",
"else:\n",
" spec_gen_model = FastPitchModel.load_from_checkpoint(checkpoint_path=fastpitch_model_path).eval().cuda()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "86f7af16",
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"audio, spectrogram = evaluate_spec_fastpitch_ckpt(spec_gen_model, vocoder_model, test)\n",
"\n",
"# visualize the spectrogram\n",
"if spectrogram is not None:\n",
" imshow(spectrogram, origin=\"lower\")\n",
" plt.show()\n",
"\n",
"# audio\n",
"print(\"original audio\")\n",
"ipd.display(ipd.Audio(filename=data_path+test_id+'.wav', rate=22050))\n",
"print(\"predicted audio\")\n",
"ipd.display(ipd.Audio(audio, rate=22050))"
]
},
{
"cell_type": "markdown",
"id": "0c5e1d3c",
"metadata": {},
"source": [
"You would hear that the above synthesized audio quality is pretty bad. It would be improved after continuing to train 1500 epochs, but again, the quality is still not acceptable. A straightforward solution is to finetune the HiFi-GAN model following the tutorial [FastPitch_Finetuning.ipynb](FastPitch_Finetuning.ipynb). Lets try that out next!"
]
},
{
"cell_type": "markdown",
"id": "b7922073",
"metadata": {},
"source": [
"# Finetuning HiFi-GAN\n",
"\n",
"Improving speech quality by Finetuning HiFi-GAN on synthesized mel-spectrograms from FastPitch."
]
},
{
"cell_type": "markdown",
"id": "47584213",
"metadata": {},
"source": [
"## Generating synthetic mels\n",
"\n",
"To generate mel-spectrograms from FastPitch, we can use `generate_spectrogram` method defined in `nemo/collections/tts/models/fastpitch.py`. However, the resulting spectrogram may be different from ground truth mel spectrogram, as shown below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8ae3ee1a",
"metadata": {},
"outputs": [],
"source": [
"test_audio_filepath = \"NeMoChineseTTS/DataChinese/sf_bilingual_speech_zh_en_vv1/SF_bilingual/wavs/com_SF_ce1.wav\"\n",
"test_audio_text = \"NTHU對面有一條宵夜街。\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9278ac6d",
"metadata": {},
"outputs": [],
"source": [
"from matplotlib.pyplot import imshow\n",
"from nemo.collections.tts.models import FastPitchModel\n",
"from matplotlib import pyplot as plt\n",
"import librosa\n",
"import librosa.display\n",
"import torch\n",
"import soundfile as sf\n",
"import numpy as np\n",
"from nemo.collections.tts.parts.utils.tts_dataset_utils import BetaBinomialInterpolator\n",
"\n",
"def load_wav(audio_file):\n",
" with sf.SoundFile(audio_file, 'r') as f:\n",
" samples = f.read(dtype='float32')\n",
" return samples.transpose()\n",
"\n",
"def plot_logspec(spec, axis=None): \n",
" librosa.display.specshow(\n",
" librosa.amplitude_to_db(spec, ref=np.max),\n",
" y_axis='linear', \n",
" x_axis=\"time\",\n",
" fmin=0, \n",
" fmax=8000,\n",
" ax=axis\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de035be0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"spec_model = FastPitchModel.restore_from(fastpitch_model_path).eval().cuda()"
]
},
{
"cell_type": "markdown",
"id": "f4310fe9",
"metadata": {},
"source": [
"So we have 2 types of mel spectrograms that we can use for finetuning HiFi-GAN:\n",
"\n",
"### 1. Original mel spectrogram generated from original audio file"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b9ee65a1",
"metadata": {},
"outputs": [],
"source": [
"print(\"loading original melspec\")\n",
"y, sr = librosa.load(test_audio_filepath)\n",
"# change n_fft, win_length, hop_length parameters below based on your specific config file\n",
"spectrogram2 = np.log(librosa.feature.melspectrogram(y=y, sr=sr, n_fft=1024, win_length=1024, hop_length=256))\n",
"spectrogram = spectrogram2[ :80, :]\n",
"print(\"spectrogram shape = \", spectrogram.shape)\n",
"plot_logspec(spectrogram)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "432bd949",
"metadata": {},
"source": [
"### 2. Mel spectrogram predicted from FastPitch"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de034fb9",
"metadata": {},
"outputs": [],
"source": [
"print(\"loading fastpitch melspec via generate_spectrogram\")\n",
"with torch.no_grad():\n",
" text = spec_model.parse(test_audio_text, normalize=False)\n",
" spectrogram = spec_model.generate_spectrogram(\n",
" tokens=text, \n",
" speaker=None,\n",
" )\n",
"spectrogram = spectrogram.to('cpu').numpy()[0]\n",
"plot_logspec(spectrogram)\n",
"print(\"spectrogram shape = \", spectrogram.shape)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "84a6d9f8",
"metadata": {},
"source": [
"**Note**: The above spectrogram has the duration of 247 frames which is not equal to the ground truth 407 frames. In order to finetune HiFi-GAN we need mel spectrogram predicted from FastPitch with groundtruth alignment and duration.\n",
"\n",
"### 2.1 Mel spectrogram predicted from FastPitch with groundtruth alignment and duration "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d27682d9",
"metadata": {},
"outputs": [],
"source": [
"print(\"loading fastpitch melspec via forward method with groundtruth alignment and duration\")\n",
"with torch.no_grad():\n",
" device = spec_model.device\n",
" beta_binomial_interpolator = BetaBinomialInterpolator()\n",
" text = spec_model.parse(test_audio_text, normalize=False)\n",
" text_len = torch.tensor(text.shape[-1], dtype=torch.long, device=device).unsqueeze(0)\n",
" audio = load_wav(test_audio_filepath)\n",
" audio = torch.from_numpy(audio).unsqueeze(0).to(device)\n",
" audio_len = torch.tensor(audio.shape[1], dtype=torch.long, device=device).unsqueeze(0)\n",
" spect, spect_len = spec_model.preprocessor(input_signal=audio, length=audio_len)\n",
" attn_prior = torch.from_numpy(\n",
" beta_binomial_interpolator(spect_len.item(), text_len.item())\n",
" ).unsqueeze(0).to(text.device)\n",
" spectrogram = spec_model.forward(\n",
" text=text, \n",
" input_lens=text_len, \n",
" spec=spect, \n",
" mel_lens=spect_len, \n",
" attn_prior=attn_prior,\n",
" speaker=None,\n",
" )[0]\n",
"spectrogram = spectrogram.to('cpu').numpy()[0]\n",
"print(\"spectrogram shape = \", spectrogram.shape)\n",
"plot_logspec(spectrogram)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "0271d26f",
"metadata": {},
"source": [
"In our experience, \n",
"- Finetuning with #1 has artifacts from the original audio (noise) that get passed on as input to the vocoder resulting in artifacts in vocoder output in the form of noise.\n",
"- <b> On the other hand, #2.1 (i.e. `Mel spectrogram predicted from FastPitch with groundtruth alignment and duration`) gives the best results because it enables HiFi-GAN to learn mel spectrograms generated by FastPitch as well as duration distributions closer to the real world (i.e. ground truth) durations. </b>\n",
"\n",
"From implementation perspective - we follow the same process described in [Finetuning FastPitch for a new speaker](FastPitch_Finetuning.ipynb) - i.e. take the latest checkpoint from FastPitch training and predict spectrograms for each of the input records in `train_manifest.json`, `test_manifest.json` and `val_manifest.json`. NeMo provides an efficient script, [scripts/dataset_processing/tts/generate_mels.py](https://raw.githubusercontent.com/nvidia/NeMo/main/scripts/dataset_processing/tts/generate_mels.py), to generate Mel-spectrograms in the directory `NeMoChineseTTS/mels` and also create new JSON manifests with a suffix `_mel` by adding a new key `\"mel_filepath\"`. For example, `train_manifest.json` corresponds to `train_manifest_mel.json` saved in the same directory. You can run the following CLI to obtain the new JSON manifests."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "37dd4579",
"metadata": {},
"outputs": [],
"source": [
"!python NeMoChineseTTS/generate_mels.py \\\n",
" --cpu \\\n",
" --fastpitch-model-ckpt {fastpitch_model_path} \\\n",
" --input-json-manifests NeMoChineseTTS/train_manifest.json NeMoChineseTTS/val_manifest.json NeMoChineseTTS/test_manifest.json \\\n",
" --output-json-manifest-root NeMoChineseTTS"
]
},
{
"cell_type": "markdown",
"id": "729cbe29",
"metadata": {},
"source": [
"Revisiting how we implement #2.1 (i.e. Predicted mel spectrogram predicted from FastPitch with groundtruth alignment and duration):\n",
"\n",
"1. Notice above that we use audio from dataset (`audio` variable) to compute spectrogram length (`spect_len`):\n",
" ```python\n",
" spect, spect_len = spec_model.preprocessor(input_signal=audio, length=audio_len)\n",
" ```\n",
"2. and groundtruth alignment (`attn_prior`).\n",
" ```python\n",
" attn_prior = torch.from_numpy(\n",
" beta_binomial_interpolator(spect_len.item(), text_len.item())\n",
" ).unsqueeze(0).to(text.device)\n",
" ```\n",
"3. We use both of them to generate synthetic mel spectrogram via `spec_model.forward` method:\n",
" ```python\n",
" spectrogram = spec_model.forward(\n",
" text=text, \n",
" input_lens=text_len, \n",
" spec=spect, \n",
" mel_lens=spect_len, \n",
" attn_prior=attn_prior,\n",
" speaker=speaker,\n",
" )[0]\n",
" ```\n",
" \n",
"Repeat the above script for train and validation datasets as well. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3250e6b1",
"metadata": {},
"outputs": [],
"source": [
"# Example HiFi-GAN manifest:\n",
"!head -n1 NeMoChineseTTS/train_manifest_mel.json | jq"
]
},
{
"cell_type": "markdown",
"id": "ee7c8af0",
"metadata": {},
"source": [
"## Launch finetuning"
]
},
{
"cell_type": "markdown",
"id": "2bbeb413",
"metadata": {},
"source": [
"We will be re-using the existing HiFi-GAN config and HiFi-GAN pretrained on English."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f038d3e1",
"metadata": {},
"outputs": [],
"source": [
"!CUDA_VISIBLE_DEVICES=0 python NeMoChineseTTS/hifigan_finetune.py --config-path . --config-name hifigan.yaml \\\n",
" trainer.max_steps=10 \\\n",
" model.optim.lr=0.00001 \\\n",
" ~model.optim.sched \\\n",
" train_dataset=NeMoChineseTTS/train_manifest_mel.json \\\n",
" validation_datasets=NeMoChineseTTS/val_manifest_mel.json \\\n",
" exp_manager.exp_dir=NeMoChineseTTS/resultChineseTTS \\\n",
" +init_from_pretrained_model={hfg_ngc} \\\n",
" +trainer.val_check_interval=5 \\\n",
" trainer.check_val_every_n_epoch=null \\\n",
" model/train_ds=train_ds_finetune \\\n",
" model/validation_ds=val_ds_finetune \\\n",
" exp_manager.create_wandb_logger=true \\\n",
" exp_manager.wandb_logger_kwargs.name=\"tutorial_2\" \\\n",
" exp_manager.wandb_logger_kwargs.project=\"ChineseTTS\""
]
},
{
"cell_type": "markdown",
"id": "3e660ce7",
"metadata": {},
"source": [
"<b>Note</b>: We've limited the above run to 10 steps only, so we can validate the implementation within the scope of this tutorial. We recommend evaluating around every 50 steps HiFi-GAN until you get desired quality results."
]
},
{
"cell_type": "markdown",
"id": "b4fc29f3",
"metadata": {},
"source": [
"## Evaluating FastPitch and Finetuned HiFi-GAN\n",
"\n",
"Let's evaluate the quality of the FastPitch model generated so far using a HiFi-GAN model finetuned on predicted mels."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a805e88f",
"metadata": {},
"outputs": [],
"source": [
"hfg_path = sorted(glob.glob(\"NeMoChineseTTS/resultChineseTTS/HifiGan/*/checkpoints/HifiGan.nemo\"), key=os.path.getmtime)[-1]\n",
"\n",
"if \".nemo\" in hfg_path:\n",
" vocoder_model_pt = HifiGanModel.restore_from(hfg_path).eval().cuda()\n",
"else:\n",
" vocoder_model_pt = HifiGanModel.load_from_checkpoint(checkpoint_path=hfg_path).eval().cuda()\n",
" \n",
"if \".nemo\" in fastpitch_model_path:\n",
" spec_gen_model = FastPitchModel.restore_from(fastpitch_model_path).eval().cuda()\n",
"else:\n",
" spec_gen_model = FastPitchModel.load_from_checkpoint(checkpoint_path=fastpitch_model_path).eval().cuda()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cdba9330",
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"audio, spectrogram = evaluate_spec_fastpitch_ckpt(spec_gen_model, vocoder_model_pt, test)\n",
"\n",
"# visualize the spectrogram\n",
"if spectrogram is not None:\n",
" imshow(spectrogram, origin=\"lower\")\n",
" plt.show()\n",
"\n",
"# audio\n",
"print(\"original audio\")\n",
"ipd.display(ipd.Audio(data_path+test_id+'.wav', rate=22050))\n",
"print(\"predicted audio\")\n",
"ipd.display(ipd.Audio(audio, rate=22050))"
]
},
{
"cell_type": "markdown",
"id": "6b127508",
"metadata": {},
"source": [
"That's it!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|