File size: 7,665 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "exact-strand",
   "metadata": {},
   "source": [
    "## Install NVidia NeMo environment"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "compound-found",
   "metadata": {},
   "source": [
    "You can locally install NeMo environment by following [installation guide](https://github.com/heartexlabs/NeMo#installation), or quickstart it from the prebuilt Docker container:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "pacific-pepper",
   "metadata": {},
   "outputs": [],
   "source": [
    "!docker run --gpus all -it --rm --shm-size=8g \\\n",
    "-p 8888:8888 -p 6006:6006 -p 8080:8080 --ulimit memlock=-1 --ulimit \\\n",
    "stack=67108864 --device=/dev/snd nvcr.io/nvidia/nemo:1.0.1"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "strong-therapist",
   "metadata": {},
   "source": [
    "Note that the default Label Studio port 8080 is exposed from Docker."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "everyday-depth",
   "metadata": {},
   "source": [
    "## Install Label Studio"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "spoken-venice",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install label-studio"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "integral-introduction",
   "metadata": {},
   "source": [
    "## Create ML backend with NeMo model"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dimensional-playing",
   "metadata": {},
   "source": [
    "Let's create a simple script `asr.py` that wraps NeMo inference call and converts its output to annotation format expected by Label Studio"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "tribal-minority",
   "metadata": {},
   "outputs": [],
   "source": [
    "import nemo\n",
    "import nemo.collections.asr as nemo_asr\n",
    "from label_studio_ml.model import LabelStudioMLBase\n",
    "\n",
    "\n",
    "class NemoASR(LabelStudioMLBase):\n",
    "\n",
    "    def __init__(self, model_name='QuartzNet15x5Base-En', **kwargs):\n",
    "        super(NemoASR, self).__init__(**kwargs)\n",
    "\n",
    "        # Find TextArea control tag and bind ASR model to it\n",
    "        self.from_name, self.to_name, self.value = self._bind_to_textarea()\n",
    "\n",
    "        # This line will download pre-trained QuartzNet15x5 model from NVIDIA's NGC cloud and instantiate it for you\n",
    "        self.model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name=model_name)\n",
    "\n",
    "    def predict(self, tasks, **kwargs):\n",
    "        \"\"\"Returns NeMo ASR predictions given audio files in Label Studio's tasks\"\"\"\n",
    "        audio_path = self.get_local_path(tasks[0]['data'][self.value])\n",
    "        transcription = self.model.transcribe(paths2audio_files=[audio_path])[0]\n",
    "        return [{\n",
    "            'result': [{\n",
    "                'from_name': self.from_name,\n",
    "                'to_name': self.to_name,\n",
    "                'type': 'textarea',\n",
    "                'value': {\n",
    "                    'text': [transcription]\n",
    "                }\n",
    "            }],\n",
    "            'score': 1.0\n",
    "        }]\n",
    "\n",
    "    def _bind_to_textarea(self):\n",
    "        \"\"\"Helper to bind inference output to annotation format expected by Label Studio\"\"\"\n",
    "        from_name, to_name, value = None, None, None\n",
    "        for tag_name, tag_info in self.parsed_label_config.items():\n",
    "            if tag_info['type'] == 'TextArea':\n",
    "                from_name = tag_name\n",
    "                if len(tag_info['inputs']) > 1:\n",
    "                    logger.warning(\n",
    "                        'ASR model works with single Audio or AudioPlus input, '\n",
    "                        'but {0} found: {1}. We\\'ll use only the first one'.format(\n",
    "                            len(tag_info['inputs']), ', '.join(tag_info['to_name'])))\n",
    "                if tag_info['inputs'][0]['type'] not in ('Audio', 'AudioPlus'):\n",
    "                    raise ValueError('{0} tag expected to be of type Audio or AudioPlus, but type {1} found'.format(\n",
    "                        tag_info['to_name'][0], tag_info['inputs'][0]['type']))\n",
    "                to_name = tag_info['to_name'][0]\n",
    "                value = tag_info['inputs'][0]['value']\n",
    "        if from_name is None:\n",
    "            raise ValueError('ASR model expects <TextArea> tag to be presented in a label config.')\n",
    "        return from_name, to_name, value"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "induced-pacific",
   "metadata": {},
   "source": [
    "## Run ML backend"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fuzzy-malta",
   "metadata": {},
   "source": [
    "The following initializes ML backend by creating a directory `./nemo-ml-backend` and copying everything needed to run, including `asr.py` script."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "outstanding-russell",
   "metadata": {},
   "outputs": [],
   "source": [
    "!label-studio-ml init nemo-ml-backend --from asr.py"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "hybrid-thread",
   "metadata": {},
   "source": [
    "Then launch ML backend serving on default `http://localhost:9090`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "black-hazard",
   "metadata": {},
   "outputs": [],
   "source": [
    "!label-studio-ml start nemo-ml-backend"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "private-recommendation",
   "metadata": {},
   "source": [
    "## Connect ML backend to Label Studio"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aerial-circulation",
   "metadata": {},
   "source": [
    "Launch Label Studio web application running on `http://localhost:8080`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "skilled-giant",
   "metadata": {},
   "outputs": [],
   "source": [
    "!label-studio start annotation-with-nemo --init"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "afraid-revision",
   "metadata": {},
   "source": [
    "In Label Studio, upload audio files either by drag-and-drop, or by importing a text file with one URL referencing an audio file per line. Then, go to the **Settings** page and select the **Speech Transcription** template. Click **Save**."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "suffering-respect",
   "metadata": {},
   "source": [
    "On the **Model** page, add the ML backend URL `http://localhost:9090`. If it connects successfully, you see \"Connected\" status in green."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "alike-realtor",
   "metadata": {},
   "source": [
    "Then you can start to annotate your audio files by correcting the text areas prepopulated by NeMo ASR's output. After you finish labeling, you can export results in the `ASR_MANIFEST` format ready to use for [training a NeMo ASR model](https://colab.research.google.com/github/NVIDIA/NeMo/blob/stable/tutorials/asr/ASR_with_NeMo.ipynb)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}