File size: 37,730 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "iyLoWDsb9rEs"
},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"# Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install text-unidecode\n",
"\n",
"## Install NeMo\n",
"BRANCH = 'r1.17.0'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[asr]\n",
"\n",
"# Install TorchAudio\n",
"!pip install torchaudio>=0.10.0 -f https://download.pytorch.org/whl/torch_stable.html\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "oDzak_FIB9LS"
},
"source": [
"# **SPEAKER RECOGNITION** \n",
"Speaker Recognition (SR) is a broad research area that solves two major tasks: speaker identification (who is speaking?) and\n",
"speaker verification (is the speaker who they claim to be?). In this work, we focus on text-independent speaker recognition when the identity of the speaker is based on how the speech is spoken,\n",
"not necessarily in what is being said. Typically such SR systems operate on unconstrained speech utterances,\n",
"which are converted into fixed-length vectors, called speaker embeddings. Speaker embeddings are also used in\n",
"automatic speech recognition (ASR) and speech synthesis."
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "ydqmdcDxCeXb"
},
"source": [
"In this tutorial, we shall first train these embeddings on speaker-related datasets, and then get speaker embeddings from a pretrained network for a new dataset. Since Google Colab has very slow read-write speeds, I'll be demonstrating this tutorial using [an4](http://www.speech.cs.cmu.edu/databases/an4/). \n",
"\n",
"Instead, if you'd like to try on a bigger dataset like [hi-mia](https://arxiv.org/abs/1912.01231) use the [get_hi-mia-data.py](https://github.com/NVIDIA/NeMo/tree/main/scripts/dataset_processing/speaker_tasks/get_hi-mia_data.py) script to download the necessary files, extract them, and resample to 16Khz if any of these samples are not at 16Khz. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "vqUBayc_Ctcr"
},
"outputs": [],
"source": [
"import os\n",
"NEMO_ROOT = os.getcwd()\n",
"print(NEMO_ROOT)\n",
"import glob\n",
"import subprocess\n",
"import tarfile\n",
"import wget\n",
"\n",
"data_dir = os.path.join(NEMO_ROOT,'data')\n",
"os.makedirs(data_dir, exist_ok=True)\n",
"\n",
"# Download the dataset. This will take a few moments...\n",
"print(\"******\")\n",
"if not os.path.exists(data_dir + '/an4_sphere.tar.gz'):\n",
" an4_url = 'https://dldata-public.s3.us-east-2.amazonaws.com/an4_sphere.tar.gz' # for the original source, please visit http://www.speech.cs.cmu.edu/databases/an4/an4_sphere.tar.gz \n",
" an4_path = wget.download(an4_url, data_dir)\n",
" print(f\"Dataset downloaded at: {an4_path}\")\n",
"else:\n",
" print(\"Tarfile already exists.\")\n",
" an4_path = data_dir + '/an4_sphere.tar.gz'\n",
"\n",
"# Untar and convert .sph to .wav (using sox)\n",
"tar = tarfile.open(an4_path)\n",
"tar.extractall(path=data_dir)\n",
"\n",
"print(\"Converting .sph to .wav...\")\n",
"sph_list = glob.glob(data_dir + '/an4/**/*.sph', recursive=True)\n",
"for sph_path in sph_list:\n",
" wav_path = sph_path[:-4] + '.wav'\n",
" cmd = [\"sox\", sph_path, wav_path]\n",
" subprocess.run(cmd)\n",
"print(\"Finished conversion.\\n******\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "t5PrWzkiDbHy"
},
"source": [
"Since an4 is not designed for speaker recognition, this facilitates the opportunity to demonstrate how you can generate manifest files that are necessary for training. These methods can be applied to any dataset to get similar training manifest files. \n",
"\n",
"First, create a list file which has all the wav files with absolute paths for each of the train, dev, and test set. This can be easily done by the `find` bash command"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "vnrUh3vuDSRN"
},
"outputs": [],
"source": [
"!find {data_dir}/an4/wav/an4_clstk -iname \"*.wav\" > data/an4/wav/an4_clstk/train_all.txt"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "BhWVg2QoDhL3"
},
"source": [
"Let's look at the first 3 lines of filelist text file for train."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "BfnMK302Du20"
},
"outputs": [],
"source": [
"!head -n 3 {data_dir}/an4/wav/an4_clstk/train_all.txt"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Y9L9Tl0XDw5Z"
},
"source": [
"Since we created the list text file for the train, we use `filelist_to_manifest.py` to convert this text file to a manifest file and then optionally split the files to train \\& dev for evaluating the models during training by using the `--split` flag. We wouldn't be needing the `--split` option for the test folder. \n",
"Accordingly please mention the `id` number, which is the field num separated by `/` to be considered as the speaker label "
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "_LYwHAr1G8hp"
},
"source": [
"After the download and conversion, your `data` folder should contain directories with manifest files as:\n",
"\n",
"* `data/<path>/train.json`\n",
"* `data/<path>/dev.json` \n",
"* `data/<path>/train_all.json` \n",
"\n",
"Each line in the manifest file describes a training sample - `audio_filepath` contains the path to the wav file, `duration` it's duration in seconds, and `label` is the speaker class label:\n",
"\n",
"`{\"audio_filepath\": \"<absolute path to dataset>data/an4/wav/an4test_clstk/menk/cen4-menk-b.wav\", \"duration\": 3.9, \"label\": \"menk\"}` "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "mpAv77JoD98c"
},
"outputs": [],
"source": [
"if not os.path.exists('scripts'):\n",
" print(\"Downloading necessary scripts\")\n",
" !mkdir -p scripts/speaker_tasks\n",
" !wget -P scripts/speaker_tasks/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/speaker_tasks/filelist_to_manifest.py\n",
"!python {NEMO_ROOT}/scripts/speaker_tasks/filelist_to_manifest.py --filelist {data_dir}/an4/wav/an4_clstk/train_all.txt --id -2 --out {data_dir}/an4/wav/an4_clstk/all_manifest.json --split"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "5kPCmx5DHvY5"
},
"source": [
"Generate the list text file for the test folder and then convert it to a manifest."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "nMd24GVaFBwr"
},
"outputs": [],
"source": [
"!find {data_dir}/an4/wav/an4test_clstk -iname \"*.wav\" > {data_dir}/an4/wav/an4test_clstk/test_all.txt\n",
"!python {NEMO_ROOT}/scripts/speaker_tasks/filelist_to_manifest.py --filelist {data_dir}/an4/wav/an4test_clstk/test_all.txt --id -2 --out {data_dir}/an4/wav/an4test_clstk/test.json"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "H5FPmxUkGakD"
},
"source": [
"## Path to manifest files\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "vo-VnYPtJO_v"
},
"outputs": [],
"source": [
"train_manifest = os.path.join(data_dir,'an4/wav/an4_clstk/train.json')\n",
"validation_manifest = os.path.join(data_dir,'an4/wav/an4_clstk/dev.json')\n",
"test_manifest = os.path.join(data_dir,'an4/wav/an4_clstk/dev.json')"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "KyDVdtjAL2__"
},
"source": [
"As the goal of most speaker-related systems is to get good speaker level embeddings that could help distinguish from\n",
"other speakers, we shall first train these embeddings in an end-to-end\n",
"manner optimizing the [TitaNet](https://arxiv.org/pdf/2110.04410.pdf) model.\n",
"We modify the decoder to get these fixed-size embeddings irrespective of the length of the input audio."
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "OJtU_GEdMUUo"
},
"source": [
"# Training\n",
"Import necessary packages"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: All the following steps are just for explanation of each section, but one can use the provided [training script](https://github.com/NVIDIA/NeMo/blob/main/examples/speaker_tasks/recognition/speaker_reco.py) to launch training in the command line."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "o1ojB0cZMSmv"
},
"outputs": [],
"source": [
"import nemo\n",
"# NeMo's ASR collection - This collection contains complete ASR models and\n",
"# building blocks (modules) for ASR\n",
"import nemo.collections.asr as nemo_asr\n",
"from omegaconf import OmegaConf"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "m5Zho11LNAFJ"
},
"source": [
"## Model Configuration \n",
"The TitaNet model is defined in a config file which declares multiple important sections.\n",
"\n",
"They are:\n",
"\n",
"1) model: All arguments that will relate to the Model - preprocessors, encoder, decoder, optimizer and schedulers, datasets, and any other related information\n",
"\n",
"2) trainer: Any argument to be passed to PyTorch Lightning"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "6HQtZfKnMhpI"
},
"outputs": [],
"source": [
"# This line will print the entire config of sample TitaNet model\n",
"!mkdir conf \n",
"!wget -P conf https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/speaker_tasks/recognition/conf/titanet-large.yaml\n",
"MODEL_CONFIG = os.path.join(NEMO_ROOT,'conf/titanet-large.yaml')\n",
"config = OmegaConf.load(MODEL_CONFIG)\n",
"print(OmegaConf.to_yaml(config))"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "HtbXN-cFOwxi"
},
"source": [
"## Setting up the datasets within the config\n",
"If you'll notice, there are a few config dictionaries called train_ds, validation_ds and test_ds. These are configurations used to setup the Dataset and DataLoaders of the corresponding config."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "NPBIf1jmNgjn"
},
"outputs": [],
"source": [
"print(OmegaConf.to_yaml(config.model.train_ds))\n",
"print(OmegaConf.to_yaml(config.model.validation_ds))"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "PLIjKOMUP0YE"
},
"source": [
"You will often notice that some configs have ??? in place of paths. This is used as a placeholder so that the user can change the value at a later time.\n",
"\n",
"Let's add the paths to the manifests to the config above\n",
"Also, since an4 dataset doesn't have a test set of the same speakers used in training, we will use validation manifest as test manifest for demonstration purposes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "TSotpjL_O2BN"
},
"outputs": [],
"source": [
"config.model.train_ds.manifest_filepath = train_manifest\n",
"config.model.validation_ds.manifest_filepath = validation_manifest"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: Since we are training speaker embedding extractor model for verification we do not add test_ds dataset. To include it add it to config and replace manifest file as \n",
"`config.model.test_ds.manifest_filepath = test_manifest`"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "xy6_Lf6fW9aJ"
},
"source": [
"Also as we are training on an4 dataset, there are 74 speaker labels in training, and we need to set this in the decoder config"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "-B96tFTnW8Yh"
},
"outputs": [],
"source": [
"config.model.decoder.num_classes = 74"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "83pHBRDpQTF0"
},
"source": [
"## Building the PyTorch Lightning Trainer\n",
"NeMo models are primarily PyTorch Lightning modules - and therefore are entirely compatible with the PyTorch Lightning ecosystem!\n",
"\n",
"Let us first instantiate a Trainer object!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "GWzGJoHMQQnG"
},
"outputs": [],
"source": [
"import torch\n",
"import pytorch_lightning as pl"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "WIYf4-KFQYHl"
},
"outputs": [],
"source": [
"print(\"Trainer config - \\n\")\n",
"print(OmegaConf.to_yaml(config.trainer))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "aXuSMYMNQeW7"
},
"outputs": [],
"source": [
"# Let us modify some trainer configs for this demo\n",
"# Checks if we have GPU available and uses it\n",
"accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
"config.trainer.devices = 1\n",
"config.trainer.accelerator = accelerator\n",
"\n",
"# Reduces maximum number of epochs to 5 for quick demonstration\n",
"config.trainer.max_epochs = 10\n",
"\n",
"# Remove distributed training flags\n",
"config.trainer.strategy = None\n",
"\n",
"# Remove augmentations\n",
"config.model.train_ds.augmentor=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "pBq3eCLwQhCy"
},
"outputs": [],
"source": [
"trainer = pl.Trainer(**config.trainer)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "-xHq_rcmQiry"
},
"source": [
"## Setting up a NeMo Experiment\n",
"NeMo has an experiment manager that handles logging and checkpointing for us, so let's use it !"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "DMm8MPYfQsCS"
},
"outputs": [],
"source": [
"from nemo.utils.exp_manager import exp_manager\n",
"log_dir = exp_manager(trainer, config.get(\"exp_manager\", None))\n",
"# The log_dir provides a path to the current logging directory for easy access\n",
"print(log_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "nQQMlXmLQ7h1"
},
"source": [
"## Building the TitaNet Model\n",
"TitaNet is a speaker embedding extractor model that can be used for speaker identification tasks - it generates one label for the entire provided audio stream. Therefore we encapsulate it inside the EncDecSpeakerLabelModel as follows."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "E_KY_s5LROYf"
},
"outputs": [],
"source": [
"speaker_model = nemo_asr.models.EncDecSpeakerLabelModel(cfg=config.model, trainer=trainer)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "_AphpMhkSVdU"
},
"source": [
"Before we begin training, let us first create a Tensorboard visualization to monitor progress"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "BUnDpe_5SbDR"
},
"outputs": [],
"source": [
"try:\n",
" from google import colab\n",
" COLAB_ENV = True\n",
"except (ImportError, ModuleNotFoundError):\n",
" COLAB_ENV = False\n",
"\n",
"# Load the TensorBoard notebook extension\n",
"if COLAB_ENV:\n",
" %load_ext tensorboard\n",
" %tensorboard --logdir {exp_dir}\n",
"else:\n",
" print(\"To use tensorboard, please use this notebook in a Google Colab environment.\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Or8g1cksSf8C"
},
"source": [
"As any NeMo model is inherently a PyTorch Lightning Model, it can easily be trained in a single line - trainer.fit(model)!\n",
"Below we see that the model begins to get modest scores on the validation set after just 5 epochs of training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "HvYhsOWuSpL_",
"scrolled": false
},
"outputs": [],
"source": [
"trainer.fit(speaker_model)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "lSRACGt3UAYn"
},
"source": [
"This config is not suited and designed for an4 so you may observe unstable val_loss"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "jvtVKO8FZsoe"
},
"source": [
"If you have a test manifest file, we can easily compute test accuracy by running\n",
"<pre><code>trainer.test(speaker_model, ckpt_path=None)\n",
"</code></pre>\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "FlBwMsRdZfqg"
},
"source": [
"## For Faster Training\n",
"We can dramatically improve the time taken to train this model by using Multi GPU training along with Mixed Precision.\n",
"\n",
"### Trainer with a distributed backend:\n",
"<pre><code>trainer = Trainer(devices=2, num_nodes=2, accelerator='gpu', strategy='dp')\n",
"</code></pre>\n",
"\n",
"### Mixed precision:\n",
"<pre><code>trainer = Trainer(amp_level='O1', precision=16)\n",
"</code></pre>\n",
"\n",
"Of course, you can combine these flags as well."
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "XcnWub9-0TW2"
},
"source": [
"## Saving/Restoring a checkpoint\n",
"There are multiple ways to save and load models in NeMo. Since all NeMo models are inherently Lightning Modules, we can use the standard way that PyTorch Lightning saves and restores models.\n",
"\n",
"NeMo also provides a more advanced model save/restore format, which encapsulates all the parts of the model that are required to restore that model for immediate use.\n",
"\n",
"In this example, we will explore both ways of saving and restoring models, but we will focus on the PyTorch Lightning method.\n",
"\n",
"## Saving and Restoring via PyTorch Lightning Checkpoints\n",
"When using NeMo for training, it is advisable to utilize the exp_manager framework. It is tasked with handling checkpointing and logging (Tensorboard as well as WandB optionally!), as well as dealing with multi-node and multi-GPU logging.\n",
"\n",
"Since we utilized the exp_manager framework above, we have access to the directory where the checkpoints exist.\n",
"\n",
"exp_manager with the default settings will save multiple checkpoints for us -\n",
"\n",
"1) A few checkpoints from certain steps of training. They will have --val_loss= tags\n",
"\n",
"2) Checkpoints at the last epoch of training are denoted by --last.\n",
"\n",
"3) If the model finishes training, it will also have a --last checkpoint."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "QSLjq-edaPt_"
},
"outputs": [],
"source": [
"# Let us list all the checkpoints we have\n",
"checkpoint_dir = os.path.join(log_dir, 'checkpoints')\n",
"checkpoint_paths = list(glob.glob(os.path.join(checkpoint_dir, \"*.ckpt\")))\n",
"checkpoint_paths"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "BwltdVWXaroa"
},
"outputs": [],
"source": [
"final_checkpoint = list(filter(lambda x: \"-last.ckpt\" in x, checkpoint_paths))[0]\n",
"print(final_checkpoint)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "1tGKKojs0fEh"
},
"source": [
"\n",
"## Restoring from a PyTorch Lightning checkpoint\n",
"To restore a model using the LightningModule.load_from_checkpoint() class method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "EgyP9cYVbFc8"
},
"outputs": [],
"source": [
"restored_model = nemo_asr.models.EncDecSpeakerLabelModel.load_from_checkpoint(final_checkpoint)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "AnZVMKZpbI_M"
},
"source": [
"# Finetuning\n",
"Since we don't have any new manifest file to finetune, I will demonstrate here by using the test manifest file we created earlier. \n",
"an4 test dataset has a different set of speakers from the train set (total number: 10). And as we didn't split this dataset for validation I will use the same for validation. "
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "kV9gInFwQ2F5"
},
"source": [
"There are a couple of ways we can finetune a speaker recognition model. \n",
"1. Finetuning using a pretrained model published on NGC. \n",
"2. Finetuning from a PTL checkpoint. \n",
"\n",
"Since finetuning from a large pretrained model is more common, I shall use it to demonstrate finetuning procedure. In order to make finetuning step independent from training from scratch, we use another config. Here we shall use `titanet-finetune.yaml` config, that is created to show finetuning on pretrained titanet-large model. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: You may use [finetune-script](https://github.com/NVIDIA/NeMo/blob/main/examples/speaker_tasks/recognition/speaker_reco_finetune.py) to launch training in the command line. Following is just a demonstration of the script"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!wget -P conf https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/speaker_tasks/recognition/conf/titanet-finetune.yaml\n",
"MODEL_CONFIG = os.path.join(NEMO_ROOT,'conf/titanet-finetune.yaml')\n",
"finetune_config = OmegaConf.load(MODEL_CONFIG)\n",
"print(OmegaConf.to_yaml(finetune_config))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For step 2, if one would like to finetune from a PTL checkpoint, `init_from_pretrained_model` in config should be replaced with `init_from_nemo_model` and need to provide the path to checkpoint. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "HtXUWmYLQ0PJ"
},
"outputs": [],
"source": [
"test_manifest = os.path.join(data_dir,'an4/wav/an4test_clstk/test.json')\n",
"finetune_config.model.train_ds.manifest_filepath = test_manifest\n",
"finetune_config.model.validation_ds.manifest_filepath = test_manifest\n",
"finetune_config.model.decoder.num_classes = 10"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "IHy1zE1cTDZn"
},
"source": [
"So we have set up the data and changed the decoder required for finetune, we now just need to create a trainer and start training with a smaller learning rate for fewer epochs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "nBmF6tQITSRl"
},
"outputs": [],
"source": [
"# Setup the new trainer object\n",
"# Let us modify some trainer configs for this demo\n",
"# Checks if we have GPU available and uses it\n",
"accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
"\n",
"trainer_config = OmegaConf.create(dict(\n",
" devices=1,\n",
" accelerator=accelerator,\n",
" max_epochs=5,\n",
" max_steps=-1, # computed at runtime if not set\n",
" num_nodes=1,\n",
" accumulate_grad_batches=1,\n",
" enable_checkpointing=False, # Provided by exp_manager\n",
" logger=False, # Provided by exp_manager\n",
" log_every_n_steps=1, # Interval of logging.\n",
" val_check_interval=1.0, # Set to 0.25 to check 4 times per epoch, or an int for number of iterations\n",
"))\n",
"print(OmegaConf.to_yaml(trainer_config))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "bRz-8-xzUHKZ"
},
"outputs": [],
"source": [
"trainer_finetune = pl.Trainer(**trainer_config)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "EOwHTkW-UUy8"
},
"source": [
"## Setting the trainer to the restored model\n",
"Setting the trainer to the restored model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "0FhYQQQOUPIk"
},
"outputs": [],
"source": [
"log_dir_finetune = exp_manager(trainer_finetune, config.get(\"exp_manager\", None))\n",
"print(log_dir_finetune)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "lc3fzGYVVTyi"
},
"source": [
"## Fine-tune training step\n",
"\n",
"When fine-tuning on a truly new dataset, we will not see such a dramatic improvement in performance. However, it should still converge a little faster than if it was trained from scratch."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"speaker_model = nemo_asr.models.EncDecSpeakerLabelModel(cfg=finetune_config.model, trainer=trainer_finetune)\n",
"speaker_model.maybe_init_from_pretrained_checkpoint(finetune_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the config, we keep weights of preprocessor and encoder, and attach a new decoder as mentioned in above section to match num of classes of new data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "uFIOsuFYVLzr"
},
"outputs": [],
"source": [
"## Fine-tuning for 5 epochs¶\n",
"trainer_finetune.fit(speaker_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tip: Add more data augmentation and dropout while finetuning on your data"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "5DNidtl4VplU"
},
"source": [
"# Saving .nemo file\n",
"Now we can save the whole config and model parameters in a single .nemo and we can anytime restore from it"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "am5wej6-VdZW"
},
"outputs": [],
"source": [
"restored_model.save_to(os.path.join(log_dir_finetune, '..',\"titanet-large-finetune.nemo\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "WnBhFJefV-Pf"
},
"outputs": [],
"source": [
"!ls {log_dir_finetune}/.."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "kVx1hNP_V_iz"
},
"outputs": [],
"source": [
"# restore from a save model\n",
"restored_model = nemo_asr.models.EncDecSpeakerLabelModel.restore_from(os.path.join(log_dir_finetune, '..', \"titanet-large-finetune.nemo\"))\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "80tLWTN40uaB"
},
"source": [
"# Speaker Verification"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "VciRUIRz0y6P"
},
"source": [
"Training for a speaker verification model is almost the same as the speaker recognition model with a change in the loss function. Angular Loss is a better function to train for a speaker verification model as the model is trained in an end-to-end manner with loss optimizing for embeddings cluster to be far from each other for different speaker by maximizing the angle between these clusters"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "ULTjBuFI19Js"
},
"source": [
"To train for verification we just need to toggle `angular` flag in `config.model.decoder.params.angular = True` else set it to `False` to train with cross-entropy loss for identification purposes. \n",
"Once we set this, the loss will be changed to angular loss and we can follow the above steps to the model.\n",
"Note the scale and margin values to be set for the loss function are present at `config.model.loss.scale` and `config.model.loss.margin`"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "LcKiNEY032-t"
},
"source": [
"## Extract Speaker Embeddings\n",
"Once you have a trained model or use one of our pretrained nemo checkpoints to get speaker embeddings for any speaker.\n",
"\n",
"To demonstrate this we shall use `nemo_asr.models.EncDecSpeakerLabelModel` with say 5 audio_samples from our dev manifest set. This model is specifically for inference purposes to extract embeddings from a trained `.nemo` model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "uXEzKMHf3r6-"
},
"outputs": [],
"source": [
"verification_model = nemo_asr.models.EncDecSpeakerLabelModel.restore_from(os.path.join(log_dir_finetune, '..', 'titanet-large-finetune.nemo'))"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Y-XiLHMQ8BIk"
},
"source": [
"Now, we need to pass the necessary manifest_filepath and params to set up the data loader for extracting embeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "lk2vsDJk9PS8"
},
"outputs": [],
"source": [
"!head -5 {validation_manifest} > embeddings_manifest.json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "DEd5poCr9yrP"
},
"outputs": [],
"source": [
"config.model.train_ds"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from nemo.collections.asr.parts.utils.speaker_utils import embedding_normalize\n",
"from tqdm import tqdm\n",
"try:\n",
" from torch.cuda.amp import autocast\n",
"except ImportError:\n",
" from contextlib import contextmanager\n",
"\n",
" @contextmanager\n",
" def autocast(enabled=None):\n",
" yield\n",
"import numpy as np\n",
"import json\n",
"import pickle as pkl"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "JIHok6LD8g0F"
},
"outputs": [],
"source": [
"def get_embeddings(speaker_model, manifest_file, batch_size=1, embedding_dir='./', device='cuda'):\n",
" test_config = OmegaConf.create(\n",
" dict(\n",
" manifest_filepath=manifest_file,\n",
" sample_rate=16000,\n",
" labels=None,\n",
" batch_size=batch_size,\n",
" shuffle=False,\n",
" time_length=20,\n",
" )\n",
" )\n",
"\n",
" speaker_model.setup_test_data(test_config)\n",
" speaker_model = speaker_model.to(device)\n",
" speaker_model.eval()\n",
"\n",
" all_embs=[]\n",
" out_embeddings = {}\n",
" \n",
" for test_batch in tqdm(speaker_model.test_dataloader()):\n",
" test_batch = [x.to(device) for x in test_batch]\n",
" audio_signal, audio_signal_len, labels, slices = test_batch\n",
" with autocast():\n",
" _, embs = speaker_model.forward(input_signal=audio_signal, input_signal_length=audio_signal_len)\n",
" emb_shape = embs.shape[-1]\n",
" embs = embs.view(-1, emb_shape)\n",
" all_embs.extend(embs.cpu().detach().numpy())\n",
" del test_batch\n",
"\n",
" all_embs = np.asarray(all_embs)\n",
" all_embs = embedding_normalize(all_embs)\n",
" with open(manifest_file, 'r') as manifest:\n",
" for i, line in enumerate(manifest.readlines()):\n",
" line = line.strip()\n",
" dic = json.loads(line)\n",
" uniq_name = '@'.join(dic['audio_filepath'].split('/')[-3:])\n",
" out_embeddings[uniq_name] = all_embs[i]\n",
"\n",
" embedding_dir = os.path.join(embedding_dir, 'embeddings')\n",
" if not os.path.exists(embedding_dir):\n",
" os.makedirs(embedding_dir, exist_ok=True)\n",
"\n",
" prefix = manifest_file.split('/')[-1].rsplit('.', 1)[-2]\n",
"\n",
" name = os.path.join(embedding_dir, prefix)\n",
" embeddings_file = name + '_embeddings.pkl'\n",
" pkl.dump(out_embeddings, open(embeddings_file, 'wb'))\n",
" print(\"Saved embedding files to {}\".format(embedding_dir))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "u2FRecqD-ln5"
},
"outputs": [],
"source": [
"manifest_filepath = os.path.join(NEMO_ROOT,'embeddings_manifest.json')\n",
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
"get_embeddings(verification_model, manifest_filepath, batch_size=64,embedding_dir='./', device=device)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "zfjXPsjzDOgr"
},
"source": [
"Embeddings are stored in dict structure with key-value pair, key being uniq_name generated based on audio_filepath of the sample present in manifest_file in `embedding_dir`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "hmTeSR6jD28k"
},
"outputs": [],
"source": [
"ls ./embeddings/"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Speaker_Recogniton_Verification.ipynb",
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|