File size: 34,785 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect\n",
"\"\"\"\n",
"\n",
"NEMO_DIR_PATH = \"NeMo\"\n",
"BRANCH = 'r1.17.0'\n",
"\n",
"! git clone https://github.com/NVIDIA/NeMo\n",
"%cd NeMo\n",
"! python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n",
"%cd .."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Speaker Diarization Training"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Neural Diarizer in Speaker Diarization Pipeline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/diar_pipeline.png\" alt=\"diar_pipeline\" style=\"width: 800px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Speaker diarization system needs to capture the characteristics of unseen speakers from the given audio recording and generate speaker-homogeneous segments which belong to corresponding speaker labels. During the speaker diarization process, the number of speakers should be estimated, then the audio segments should be assigned to a few of speaker labels. \n",
"\n",
"While clustering algorithms can also assign segments to speaker groups, overlap-aware diarization cannot be done with clustering based diarizer since one segment is only assigned to one speaker label. However, we can use the clustering result to create initial speaker profiles and train a neural model that generates overlap-aware speaker labels by comparing the input audio signal with the initial speaker profiles. In the NeMo speaker diarization toolkit, we refer to such neural modules as **neural diarizer**. \n",
"\n",
"The Multi-scale Diarization Decoder (MSDD) model is a type of neural diarizer we can use in the NeMo speaker diarization pipeline. This tutorial shows how to train MSDD on a small toy dataset. By using MSDD on top of clustering diarizer, we can obtain the following benefits:\n",
"\n",
"- **Improved diarization accuracy**: Compared to clustering diarizer, MSDD could achieve a lower diarization error rate (DER)\n",
"- **Overlap aware diarization**: Speaker diarization results in clustering diarizer do not include speech overlaps\n",
"- **Model training on actual multispeaker dataset**: Unlike training a speaker embedding model, we can train or finetune a neural model on an actual speaker diarization dataset where multiple speakers are recorded in a single audio file. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Training and inference of Multi-scale Diarization Decoder\n",
"\n",
"When it comes to the speaker diarization problem, MSDD model employs a divide-and-conquer strategy where a pairwise model is employed for both training and inference. The following figure explains how a pairwise model is employed for training and inference."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/msdd_train_and_infer.png\" alt=\"MSDD_train_infer\" style=\"width: 800px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here are itemized descriptions of noteworthy features of the MSDD model.\n",
"\n",
"#### Training \n",
"\n",
"- **Oracle VAD, multi-scale segmentation for training** \n",
"In a training setup, we use oracle VAD from ground-truth annotation files (RTTM files) and perform multiscale segmentation. After we obtain timestamps for each and every segment, we feed multi-scale timestamps and raw audio signals into a computational graph where the speaker embedding extractor and neural diarizer is trained. \n",
"\n",
" \n",
"- **MSDD inputs for training process** \n",
"During training, we employ oracle clustering result (ground-truth speaker labels in the annotation file) to calculate the cluster-average embeddings. Subsequently, we calculate binary cross-entropy loss which calculates a loss value for each timestep and each speaker.\n",
"\n",
"\n",
"- **End-to-end training: from raw audio to speaker label** \n",
"The training approach we employ can be considered as end-to-end training since the input to the computational graph is raw audio signal and the outputs are speaker labels. The end-to-end training is depicted in a dotted box in the above figure. We can either freeze the speaker embedding model or train it jointly depending on the tasks. \n",
"\n",
"\n",
"- **Pairwise (two-speaker) unit model** \n",
"While training the MSDD model, we use a two-speaker dataset for a two speaker model. For this pairwise training, we clean the source dataset to have only two speakers by splitting the annotation. \n",
"\n",
"\n",
"- **Split training samples** \n",
"Since we have finite GPU memory for training, we break down the training audio samples into short audio samples. We set step-count, and step-count indicates a unit of decision for speaker label estimation. We set step-count (e.g., `step_count=50`) when we create training datasets and use the step-count for training. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Inference\n",
"\n",
"- **Multi-scale clustering** \n",
"In inference mode, we apply multi-scale clustering for obtaining speaker profiles that are represented by cluster-average embedding. \n",
"\n",
"\n",
"- **Divide-and-conquer approach with pairwise (two-speaker) unit model** \n",
"We retrieve all possible pairs from the estimated number of speakers and average the results. For example, if there are four speakers `(A, B, C, D)`, we extract 6 pairs: `(A,B)`, `(A,C)`, `(A,D)`, `(B,C)`, `(B,D)`, `(C,D)`. Finally, the sigmoid outputs are averaged. In this way, MSDD can deal with a flexible number of speakers using a pairwise model.\n",
"\n",
"\n",
"- **Split inference samples** \n",
"As in the training process, we can also break down the target samples for inference. While we can do inference on whole input audio at once, split inference generally gives an improved performance. It is recommended to use the same step-count you used for training the MSDD model (e.g., `diar_window_length=50`) for your inference configurations."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Input and Output of Multi-scale Diarization Decoder"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"While using an MSDD model as neural diarizer has a few benefits, MSDD models require a clustering result to obtain initial speaker profiles as references for performing overlap-aware speaker diarization inference. Here are descriptions for input and output of the MSDD model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Input: Clustering as Initialization\n",
"\n",
"MSDD model is a diarizer model that accepts two different data inputs:\n",
"\n",
" 1. Cluster-average embeddings\n",
" 2. Multi-scale embedding sequence \n",
" \n",
"The two input signals are depicted in the following figure."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/msdd_inputs.png\" alt=\"MSDD_inputs\" style=\"width: 600px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"By initializing the diarization task with a clustering algorithm, we can estimate the number of speakers and cluster-average embeddings. Thus, the cluster-average embeddings provide the speaker profile of each speaker. The cluster-average embeddings we provide can be regarded as reference signals for providing seed speaker profiles.\n",
"\n",
"Once we obtain the fixed (or estimated) number of speakers, the speaker diarization problem becomes a binary classification task where we need to estimate whether a certain speaker's speech exists or not at a given timestep. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Output: Sigmoid Output and Binary Cross-entropy Loss"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/msdd_output_loss.png\" alt=\"MSDD_output_loss\" style=\"width: 600px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above figure depicts the inputs and outputs of the MSDD model. As an output from MSDD, sigmoid values for each speaker are generated. These sigmoid values are independent from the other speakers and indicate the simulated probability of the corresponding speaker's speech signal at the given step. During the training process, binary cross-entropy (BCE) is calculated for each individual sigmoid value and summed up to calculate the total loss for optimization."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example Data Creation\n",
"\n",
"- Please skip this section and go directly to [Prepare Training data for MSDD](#Prepare-Training-data-for-MSDD) section if you have your own speaker diarization dataset. \n",
"\n",
"In this tutorial, we use [NeMo Multispeaker Simulator](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tools/Multispeaker_Simulator.ipynb) and the Librispeech corpus to generate a toy training dataset for demonstration purpose. You can replace the simulated dataset with your own datasets if you have proper speaker annotations (RTTM files) for the dataset. If you do not have access to any speaker diarization datasets, you can use [NeMo Multispeaker Simulator](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tools/Multispeaker_Simulator.ipynb) by generating a good amount of data samples to meet your needs. \n",
"\n",
"For more details regarding data simulator, please follow the descriptions in [NeMo Multispeaker Simulator](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tools/Multispeaker_Simulator.ipynb) and we will not cover configurations and detailed process of data simulation in this tutorial. \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install dependencies for data simulator\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install wget\n",
"!pip install unidecode\n",
"!pip install \"matplotlib>=3.3.2\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Data Simulation Step 1: Download Required Resources\n",
"\n",
"We need to download the LibriSpeech corpus and corresponding word alignments for generating synthetic multi-speaker audio sessions. In addition, we need to download necessary data cleaning scripts from NeMo git."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"NEMO_DIR_PATH = \"NeMo\"\n",
"BRANCH = 'r1.17.0'\n",
"\n",
"# download scripts if not already there \n",
"if not os.path.exists('NeMo/scripts'):\n",
" print(\"Downloading necessary scripts\")\n",
" !mkdir -p NeMo/scripts/dataset_processing\n",
" !mkdir -p NeMo/scripts/speaker_tasks\n",
" !wget -P NeMo/scripts/dataset_processing/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/dataset_processing/get_librispeech_data.py\n",
" !wget -P NeMo/scripts/speaker_tasks/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/speaker_tasks/create_alignment_manifest.py\n",
" !wget -P NeMo/scripts/speaker_tasks/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/speaker_tasks/create_msdd_train_dataset.py \n",
" !wget -P NeMo/scripts/speaker_tasks/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/speaker_tasks/pathfiles_to_diarize_manifest.py"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have downloaded all the necessary scripts for data creation and preparation, we can start the data simulation step by downloading the LibriSpeech corpus."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!mkdir -p LibriSpeech\n",
"!python {NEMO_DIR_PATH}/scripts/dataset_processing/get_librispeech_data.py \\\n",
" --data_root LibriSpeech \\\n",
" --data_sets dev_clean"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can get the forced word alignments data for the LibriSpeech corpus from [this repository.](https://github.com/CorentinJ/librispeech-alignments). Full forced alignments data can be downloaded at [google drive link for alignments data](https://drive.google.com/file/d/1WYfgr31T-PPwMcxuAq09XZfHQO5Mw8fE/view?usp=sharing). We will download only a subset of forced alignment data containing dev-clean part."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!wget -nc https://dldata-public.s3.us-east-2.amazonaws.com/LibriSpeech_Alignments.tar.gz\n",
"!tar -xzf LibriSpeech_Alignments.tar.gz\n",
"!rm -f LibriSpeech_Alignments.tar.gz"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Data Simulation Step 2: Produce Manifest File with Forced Alignments\n",
"\n",
"We will merge the LibriSpeech manifest files and LibriSpeech forced alignments into one manifest file for ease of use when generating synthetic data. Create alignment files by running the following script.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python NeMo/scripts/speaker_tasks/create_alignment_manifest.py \\\n",
" --input_manifest_filepath LibriSpeech/dev_clean.json \\\n",
" --base_alignment_path LibriSpeech_Alignments \\\n",
" --output_manifest_filepath ./dev-clean-align.json \\\n",
" --ctm_output_directory ./ctm_out \\\n",
" --libri_dataset_split dev-clean"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Data Simulation Step 3: Set data simulation parameters"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have downloaded all the sources we need for data creation, we need to download data simulator configurations in `.yaml` format. Download the YAML file and download `data_simulator.py` script from NeMo repository."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from omegaconf import OmegaConf\n",
"import os\n",
"ROOT = os.getcwd()\n",
"conf_dir = os.path.join(ROOT,'conf')\n",
"!mkdir -p $conf_dir\n",
"CONFIG_PATH = os.path.join(conf_dir, 'data_simulator.yaml')\n",
"if not os.path.exists(CONFIG_PATH):\n",
" !wget -P $conf_dir https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/tools/speech_data_simulator/conf/data_simulator.yaml\n",
"\n",
"config = OmegaConf.load(CONFIG_PATH)\n",
"print(OmegaConf.to_yaml(config))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Data Simulation Step 4: Generate Simulated Audio Session\n",
"\n",
"We will generate a set of example sessions with the following specifications:\n",
"\n",
"- 3 example sessions for train \n",
"- 3 example sessions for validation\n",
"- 2-speakers in each session\n",
"- 60 seconds of recordings\n",
"\n",
"We need to setup different seed for train and validation sets."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from nemo.collections.asr.data.data_simulation import MultiSpeakerSimulator\n",
"\n",
"# Generate train set \n",
"ROOT = os.getcwd()\n",
"data_dir = os.path.join(ROOT,'simulated_train')\n",
"config.data_simulator.random_seed=10\n",
"config.data_simulator.manifest_filepath=\"./dev-clean-align.json\"\n",
"config.data_simulator.outputs.output_dir=data_dir\n",
"config.data_simulator.session_config.num_sessions=3\n",
"config.data_simulator.session_config.num_speakers=2\n",
"config.data_simulator.session_config.session_length=60\n",
"config.data_simulator.background_noise.add_bg=False \n",
"\n",
"lg = MultiSpeakerSimulator(cfg=config)\n",
"lg.generate_sessions()\n",
"\n",
"# Generate validation set \n",
"data_dir = os.path.join(ROOT,'simulated_valid')\n",
"config.data_simulator.random_seed=20\n",
"config.data_simulator.outputs.output_dir=data_dir\n",
"\n",
"lg = MultiSpeakerSimulator(cfg=config)\n",
"lg.generate_sessions()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that parameter setting is done, generate the samples by launching `generate_sessions()`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lg = MultiSpeakerSimulator(cfg=config)\n",
"lg.generate_sessions()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data preparation step 5: Listen to and Visualize Session\n",
"\n",
"Listen to the audio and visualize the corresponding speaker timestamps (recorded in a RTTM file for each session)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import os\n",
"import wget\n",
"import IPython\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import librosa\n",
"from nemo.collections.asr.parts.utils.speaker_utils import rttm_to_labels, labels_to_pyannote_object\n",
"\n",
"ROOT = os.getcwd()\n",
"data_dir = os.path.join(ROOT,'simulated_train')\n",
"audio = os.path.join(data_dir,'multispeaker_session_0.wav')\n",
"rttm = os.path.join(data_dir,'multispeaker_session_0.rttm')\n",
"\n",
"sr = 16000\n",
"signal, sr = librosa.load(audio,sr=sr) \n",
"\n",
"fig,ax = plt.subplots(1,1)\n",
"fig.set_figwidth(20)\n",
"fig.set_figheight(2)\n",
"plt.plot(np.arange(len(signal)),signal,'gray')\n",
"fig.suptitle('Synthetic Audio Session', fontsize=16)\n",
"plt.xlabel('Time (s)', fontsize=18)\n",
"plt.yticks([], [])\n",
"ax.margins(x=0)\n",
"a,_ = plt.xticks()\n",
"plt.xticks(a[:-1],a[:-1]/sr);\n",
"IPython.display.Audio(audio)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can visually check the ground-truth file of the first sample by running the following commands. We can see that it has plenty of overlap between two speakers. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# display speaker labels for reference\n",
"labels = rttm_to_labels(rttm)\n",
"reference = labels_to_pyannote_object(labels)\n",
"reference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can check that corresponding RTTM files are generated as ground-truth labels for training and evaluation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!cat simulated_train/multispeaker_session_0.rttm | head -10"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data preparation step 6: Check out the created files\n",
"\n",
"The following files are generated from data simulator:\n",
"\n",
"* _wav files_ (one per audio session) - the output audio sessions\n",
"* _rttm files_ (one per audio session) - the speaker timestamps for the corresponding audio session (used for diarization training)\n",
"* _list files_ (one per file type per batch of sessions) - a list of generated files of the given type (e.g., wav, rttm), used primarily for manifest creation\n",
"\n",
"Check if the files we need are generated by running the following commands."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"\\n Training audio files:\")\n",
"!ls simulated_train/*.wav\n",
"print(\"\\n Training audio files:\")\n",
"!ls simulated_train/*.rttm\n",
"print(\"\\n Training RTTM list content:\")\n",
"!cat simulated_train/synthetic_wav.list\n",
"print(\"\\n Training RTTM list content:\")\n",
"!cat simulated_train/synthetic_rttm.list\n",
"\n",
"print(\"\\n Validation audio files:\")\n",
"!ls simulated_valid/*.wav\n",
"print(\"\\n Validation audio files:\")\n",
"!ls simulated_valid/*.rttm\n",
"print(\"\\n Validation RTTM list content:\")\n",
"!cat simulated_valid/synthetic_wav.list\n",
"print(\"\\n Validation RTTM list content:\")\n",
"!cat simulated_valid/synthetic_rttm.list"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare Training Data for MSDD"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have datasets for both train and validation (dev), we can start preparing and cleaning the data samples for training. Make sure you have the following list of files:\n",
"\n",
"**Training set** \n",
"\n",
"- Train audio files `.wav`\n",
"- A train audio list file `.list`\n",
"- Train RTTM files `.rttm`\n",
"- A train RTTM list content `.list`\n",
"\n",
"**Validation set** \n",
"\n",
"- Validation audio files `.wav`\n",
"- A validation audio list file `.list`\n",
"- Validation RTTM files `.rttm`\n",
"- A validation RTTM list file `.list`\n",
"\n",
"\n",
"Based on these files, we need to create manifest files containing data samples we have. If you don't have a `.list` file, you need to create a `.list` file for the `.wav` files and `.rttm` files."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# create a NeMo manifest (.json) file for training dataset\n",
"!python NeMo/scripts/speaker_tasks/pathfiles_to_diarize_manifest.py \\\n",
" --paths2audio_files='simulated_train/synthetic_wav.list' \\\n",
" --paths2rttm_files='simulated_train/synthetic_rttm.list' \\\n",
" --manifest_filepath='simulated_train/msdd_data.json'\n",
"\n",
"# create a NeMo manifest (.json) file for validation (dev) dataset\n",
"!python NeMo/scripts/speaker_tasks/pathfiles_to_diarize_manifest.py \\\n",
" --paths2audio_files='simulated_valid/synthetic_wav.list' \\\n",
" --paths2rttm_files='simulated_valid/synthetic_rttm.list' \\\n",
" --manifest_filepath='simulated_valid/msdd_data.json'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you print the content of the created manifest file, you can see that `.rttm` files in the list and `.wav` files are grouped together in the generated manifest files."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"\\n An example line in training dataset manifest file:\")\n",
"!cat simulated_train/msdd_data.json | head -1\n",
"print(\"\\n An example line in validation Dataset manifest file:\")\n",
"!cat simulated_valid/msdd_data.json | head -1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have input a standard manifest file, we need to break down each audio clip into short audio clips so that we can put several samples in a batch. \n",
"\n",
"Before we generate a manifest file and RTTM files for training MSDD, you have to determine:\n",
"\n",
"- `window`: the window length of the base scale (the shortest scale)\n",
"- `shift`: the hop-length of the base scale (the shortest scale)\n",
"- `step_count`: how many decision steps in one data sample\n",
"\n",
"Note that these numbers should match the parameters in the configurations for your desired MSDD model. If you want to train with new parameters (`window`, `shift` and `step_count`), you need to make new manifest files with the new parameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# create a manifest (.json) file for training dataset\n",
"!python NeMo/scripts/speaker_tasks/create_msdd_train_dataset.py \\\n",
" --input_manifest_path='simulated_train/msdd_data.json' \\\n",
" --output_manifest_path='simulated_train/msdd_data.50step.json' \\\n",
" --pairwise_rttm_output_folder='simulated_train/' \\\n",
" --window 0.5 \\\n",
" --shift 0.25 \\\n",
" --step_count 50 \n",
" \n",
"# create a manifest (.json) file for validation (dev) dataset\n",
"!python NeMo/scripts/speaker_tasks/create_msdd_train_dataset.py \\\n",
" --input_manifest_path='simulated_valid/msdd_data.json' \\\n",
" --output_manifest_path='simulated_valid/msdd_data.50step.json' \\\n",
" --pairwise_rttm_output_folder='simulated_valid/' \\\n",
" --window 0.5 \\\n",
" --shift 0.25 \\\n",
" --step_count 50 "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we broke down the training and validation dataset into 50-step samples, let's checkout how the output manifest files look like. We used 0.25 second of shift length so in theory, if there is no silence or pause in the data, the length of data sample should be `step_count*shift` which is `50*0.25=12.5` second in the example we used. However, since there are pauses between the segments in practice, the final lengths of data samples are longer than 12.5 second."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"\\nTraining Dataset:\")\n",
"!cat simulated_train/msdd_data.50step.json | tail -5\n",
"print(\"\\nValidation Dataset:\")\n",
"!cat simulated_valid/msdd_data.50step.json | tail -5 "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train an MSDD Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have prepared all the necessary dataset, we can train an MSDD model on the prepared dataset. Download YAML file for training form NeMo repository and load the configuration into `config` variable."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import nemo\n",
"import nemo.collections.asr as nemo_asr\n",
"from omegaconf import OmegaConf\n",
"\n",
"NEMO_ROOT = os.getcwd()\n",
"!mkdir conf \n",
"!wget -P conf https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/speaker_tasks/diarization/conf/neural_diarizer/msdd_5scl_15_05_50Povl_256x3x32x2.yaml\n",
"MODEL_CONFIG = os.path.join(NEMO_ROOT,'conf/msdd_5scl_15_05_50Povl_256x3x32x2.yaml')\n",
"config = OmegaConf.load(MODEL_CONFIG)\n",
"print(OmegaConf.to_yaml(config))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Setup the `manifest_filepath` for `train_ds` and `validation_ds` by feeding the `json` file paths from `create_msdd_train_dataset.py`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config.model.train_ds.manifest_filepath = 'simulated_train/msdd_data.50step.json'\n",
"config.model.validation_ds.manifest_filepath = 'simulated_valid/msdd_data.50step.json'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Train MSDD with frozen speaker embedding model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Provide a batch size number for training in `config.model.batch_size`. In a batch, we will assign the given number of split samples (in this example, 50 step-size). Note that you might need to change this batch size if the following batch size maxes out your GPU memory size. \n",
"\n",
"`config.model.emb_batch_size` determines the number of embedding vectors attached to a computational graph. This means that \n",
"If you want to freeze the speaker embedding extractor, you should set `emb_batch_size=0`.\n",
"If you want to jointly optimize speaker embedding extractor, you need to assign an adequate number that does not max out the GPU memory. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config.batch_size=5\n",
"config.model.emb_batch_size=0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Provide paths to the temporary folders for saving timestamp data during training."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config.model.train_ds.emb_dir=\"simulated_train\" \n",
"config.model.validation_ds.emb_dir=\"simulated_valid\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Setup a speaker embedding model that will be used for speaker embedding extraction. We will use `titanet_large` model checkpoint from NGC. Note that this speaker embedding model will be saved together in a `.ckpt` file whenever pytorch lightning trainer saves checkpoint. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config.model.diarizer.speaker_embeddings.model_path=\"titanet_large\"\n",
"config.trainer.max_epochs = 5\n",
"config.trainer.strategy = None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will use `pytorch_lightning` and train a model instance from class `EncDecDiarLabelModel`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pytorch_lightning as pl\n",
"from nemo.collections.asr.models import EncDecDiarLabelModel\n",
"from nemo.utils.exp_manager import exp_manager\n",
"\n",
"trainer = pl.Trainer(**config.trainer)\n",
"exp_manager(trainer, config.get(\"exp_manager\", None))\n",
"msdd_model = EncDecDiarLabelModel(cfg=config.model, trainer=trainer)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Before we start training, let's check a few of the weights in the speaker embedding model in `msdd_model.msdd._speaker_model`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"msdd_model.msdd._speaker_model.state_dict()[\"encoder.encoder.0.mconv.0.conv.weight\"][0,:,:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you successfully ran the previous step, now it is ready to initiate a training session of MSDD. Launch `trainer.fit()` function for `msdd_model`. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"trainer.fit(msdd_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this way, you can train an MSDD model and use `.ckpt` files saved during training process."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's check the weights in speaker embedding model again and see if the numbers are changed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"msdd_model.msdd._speaker_model.state_dict()[\"encoder.encoder.0.mconv.0.conv.weight\"][0,:,:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Train MSDD and speaker embedding model together"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this time, let's attach a few speaker embeddings to a graph and jointly train the speaker embedding mode."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config.model.emb_batch_size = 100 # choose the largest number that does not max out GPU memory.\n",
"config.trainer.max_epochs = 5"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Setup another trainer and initiate a training session with the new parameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"trainer = pl.Trainer(**config.trainer)\n",
"exp_manager(trainer, config.get(\"exp_manager\", None))\n",
"msdd_model = EncDecDiarLabelModel(cfg=config.model, trainer=trainer)\n",
"trainer.fit(msdd_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's check whether there is a change in the weights."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"msdd_model.msdd._speaker_model.state_dict()[\"encoder.encoder.0.mconv.0.conv.weight\"][0,:,:]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|